SL-4500
4-1/2” (11.43cm) 8K Lbs.-Ft. “Slim” Hydraulic Power Tong & Backup

• Specifications
• Operation
• Maintenance
• Assembly
This manual covers the following models:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>REV</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-2001-6</td>
<td>0</td>
<td>4-1/2" 6500 lb.-ft. "Slim" Tong with integrated backup & support structure, standard 2-arm sling, motor valve, backup valve, & safety door.</td>
</tr>
<tr>
<td>80-2001-8</td>
<td>0</td>
<td>4-1/2" 8000 lb.-ft. "Slim" Tong with integrated backup & support structure, standard 2-arm sling, motor valve, backup valve, lift valve, & safety door.</td>
</tr>
<tr>
<td>80-2001-10</td>
<td>0</td>
<td>4-1/2" 8000 lb.-ft. "Slim" Tong with integrated backup & support structure, short 2-arm sling, motor valve, backup valve, lift valve, & safety door.</td>
</tr>
<tr>
<td>80-2001-13</td>
<td>0</td>
<td>4-1/2" 8000 lb.-ft. "Slim" Tong with integrated backup & support structure, standard 2-arm sling, motor valve, backup valve, lift valve, safety door, & dump valve</td>
</tr>
</tbody>
</table>

NOTE: CE Marking available for all models except 80-2001-10. Some illustrations used in this manual may not exactly match your model of tong.
This page intentionally left blank
WARNINGS

A “LOAD-BEARING DEVICE” IS A CHAIN SLING, RIGID SLING, SPREADER BAR ASSEMBLY, FRAME, OR ANY OTHER DEVICE THAT BEARS THE PARTIAL OR TOTAL WEIGHT OF THE EQUIPMENT FOR WHICH THIS MANUAL HAS BEEN PRODUCED.

THE LOAD-BEARING DEVICE SUPPLIED BY MCCOY DRILLING & COMPLETIONS IS DESIGNED TO SUPPORT THE EQUIPMENT DESCRIBED IN THIS MANUAL. MCCOY DRILLING & COMPLETIONS WILL NOT GUARANTEE THE ABILITY OF THE LOAD-BEARING DEVICE TO SUPPORT ANY OTHER PART, ASSEMBLY OR COMBINATION OF PARTS AND ASSEMBLIES. MCCOY DRILLING & COMPLETIONS WILL NOT GUARANTEE THE ABILITY OF THE LOAD-BEARING DEVICE TO LIFT OR SUPPORT THE EQUIPMENT DESCRIBED IN THIS MANUAL IF THERE ARE ANY MODIFICATIONS TO THE LOAD-BEARING DEVICE, OR ANY ADDITIONS TO THE EQUIPMENT DESCRIBED IN THIS MANUAL THAT ADD WEIGHT TO THE EQUIPMENT, UNLESS SUPPLIED BY MCCOY DRILLING & COMPLETIONS.

WHEN RE-ASSEMBLING LOAD-BEARING DEVICES (CHAIN SLINGS, RIGID SLINGS, BACKUP LEGS, ETC.) NOTE THAT THE ASSOCIATED FASTENERS MUST BE TIGHTENED TO THE CORRECT TORQUE SPECIFIED FOR THAT SIZE OF FASTENER (SEE SECTION 3 - OVERHAUL). ANY THREADED FASTENER IN A LOAD-BEARING DEVICE MUST BE SECURED WITH RED OR BLUE LOCTITE™.

ANY REPLACEMENT FASTENER (BOLTS, NUTS, CAP SCREWS, MACHINE SCREWS, ETC.) USED DURING MAINTENANCE OR OVERHAUL MUST BE GRADE 8 OR EQUIVALENT UNLESS OTHERWISE SPECIFIED.
This page intentionally left blank
Summary Of Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Section</th>
<th>Page</th>
<th>Description Of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2009</td>
<td>N/A</td>
<td>N/A</td>
<td>Initial Release</td>
</tr>
<tr>
<td>Sep 2009</td>
<td>Intro</td>
<td>1.2 & 1.3</td>
<td>Corrected dimensions on the specification pages</td>
</tr>
<tr>
<td>May 2010</td>
<td>Varies</td>
<td>Varies</td>
<td>Updated illustrations throughout to represent updated jaw retention mechanism, updated logos and branding</td>
</tr>
<tr>
<td>June 2010</td>
<td>Varies</td>
<td>Varies</td>
<td>Updated manual to comply with CE marking</td>
</tr>
<tr>
<td>September 2010</td>
<td>Appendixes</td>
<td>Varies</td>
<td>Revised appendix</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>Added table of illustrations</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.13</td>
<td>Inserted subsection 2.F.1, “Tong Rig-Up & Leveling, Suspension & Restraint”</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.17</td>
<td>Inserted subsection 2.G.1, “Tong Operation, Operator Training”</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>Inserted Section 3.C, “Preventive Maintenance Practices”.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.6</td>
<td>Inserted Subsection 3.E.2, “Safety Door Switch Adjustment”.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.16</td>
<td>Moved “Daily Power Tong Inspection & Maintenance Checklist” to Maintenance section.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.18</td>
<td>Moved “Monthly Power Tong Inspection & Maintenance Checklist” to Maintenance section.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.21</td>
<td>Moved “Daily Backup Inspection & Maintenance Checklist” to Maintenance section.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.22</td>
<td>Moved “Daily Power Unit Inspection & Maintenance Checklist” to Maintenance section.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.23</td>
<td>Moved “Tubular Connection Equipment De-commissioning Checklist” to Maintenance section.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.26</td>
<td>Moved “Tubular Connection Equipment Re-commissioning Checklist” to Maintenance section.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.1 - 4.6</td>
<td>Revised “Troubleshooting” section.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ALL</td>
<td>Complete revision of torque measurement section</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Introduction & Specifications
- Introduction & Contact Information ... 1.1
- Equipment Specifications .. 1.2
- Lubrication Specifications ... 1.4

Setup & Operation
- Sling / Load Bearing Device Safety ... 2.1
- Major Component Identification ... 2.4
- Hydraulic Schematic / Hydraulic Valve Identification 2.8
- Hydraulic Connections ... 2.11
- Tong / Backup Jaw Availability & Installation ... 2.12
- Tong Rig-Up & Leveling .. 2.13
- Tong Operation .. 2.17
- Extreme Cold Weather Operation Procedures .. 2.20
- Making & Breaking Connections ... 2.21

Maintenance
- General Maintenance Safety Practices .. 3.1
- Cleaning ... 3.1
- Preventive Maintenance .. 3.1
- Lubrication .. 3.2
- Adjustments .. 3.5
- Recommended Periodic Checks .. 3.7
- Disassembly & Overhaul Procedures .. 3.8
- Assembly Instructions .. 3.9
- Monthly Inspection & Maintenance Checklist (Power Tong) 3.18
- Daily Inspection & Maintenance Checklist (Backup) .. 3.21
- Daily Inspection & Maintenance Checklist (Power Unit) 3.22
- Tubular Connection Equipment De-commissioning Procedures 3.23
- Tubular Connection Equipment Re-commissioning Procedures 3.26

Troubleshooting
- Tong Will Not Develop Sufficient Torque .. 4.1
- Failure Of Jaws To Grip Pipe ... 4.3
- Tong Running Too Slowly .. 4.4
- General Comments ... 4.5

Assemblies And Parts
- Gear Train ... 5.2
- Idler Assemblies .. 5.4
- Reduction Gear Assembly (Small) .. 5.6
- Reduction Gear Assembly (Large) ... 5.8
- Rotary Assembly .. 5.10
- Rotary Gear Assembly .. 5.12
- Tong Body Assembly .. 5.14
- Hydraulic Assembly ... 5.16
- Motor Assembly .. 5.18
- Brake Bands ... 5.20
- Door Assembly .. 5.22
- Rigid Sling Assembly ... 5.24
- Backup Assembly .. 5.26
- Rear Leg Assembly .. 5.28
- Front Leg Assemblies ... 5.30

Torque Measurement

Hydraulic Component Information
LIST OF ILLUSTRATIONS

Illustration 1.A.1: SL4500 Tong & Backup... 1.1
Illustration 1.A.2: SL4500 Dimensions... 1.2
Illustration 1.A.3: Sling Angle.. 1.3
Illustration 1.B.1: Component Identification 01... 2.4
Illustration 1.B.2: Component Identification 02... 2.5
Illustration 1.B.3: Component Identification 03... 2.6
Illustration 1.B.4: Component Identification 04... 2.6
Illustration 1.B.5: Component Identification 05... 2.7
Illustration 2.C.1: Hydraulic Schematic 01... 2.8
Illustration 2.C.2: Hydraulic Component Identification 01.......................... 2.9
Illustration 2.C.3: Hydraulic Component Identification 02.......................... 2.9
Illustration 2.C.4: Hydraulic Component Identification 03.......................... 2.10
Illustration 2.D.1: Hydraulic Connections 01.. 2.11
Illustration 2.D.2: Hydraulic Connections 02.. 2.11
Illustration 2.E.1: Tong Jaw Removal... 2.12
Illustration 2.E.2: Tong Jaw Die Replacement... 2.13
Illustration 2.F.1: Master Link... 2.14
Illustration 2.F.2: Tong Leveling.. 2.15
Illustration 2.G.1: Tong Motor Control... 2.16
Illustration 2.G.2: Lift Cylinder Control... 2.18
Illustration 2.G.3: Backup Clamp Control.. 2.19
Illustration 2.G.4: Motor Speed Control.. 2.19
Illustration 2.H.1.1: Tong Suspension - Master Link..................................... 2.21
Illustration 2.H.1.2: Setting Backing Pin to “Make-up”.................................. 2.22
Illustration 2.H.1.3: Backup Control... 2.22
Illustration 2.H.1.4: CLAMP Pressure Gauge on Gauge Panel.................. 2.23
Illustration 2.H.1.5: Backup Pressure Control Valve...................................... 2.23
Illustration 2.H.1.6: Unlatching & Opening Door.. 2.24
Illustration 2.H.1.7: Lift Cylinder Control... 2.25
Illustration 2.H.1.8: Backup Control... 2.26
Illustration 2.H.1.9: Motor Speed Control... 2.26
Illustration 2.H.1.10: Rotation Control - Makeup... 2.27
Illustration 2.H.1.11: Torque & System Pressure Gauges on Gauge Panel...... 2.27
Illustration 2.H.1.12: Switching Motor speed Switch To LOW SPEED........ 2.28
Illustration 2.H.1.13: Reversing Rotation To Free Tong Jaws...................... 2.28
Illustration 2.H.1.14: Un-clamping Backup Jaws.. 2.29
Illustration 2.H.1.15: Lowering Assembly Using Lift Cylinder Control........ 2.29
Illustration 2.H.1.16: Setting Backing Pin To “Break-out” Mode.................... 2.30
Illustration 2.H.1.17: Rotation Control - Break-out... 2.31
Illustration 2.H.1.18: Switching Motor Speed Control To HIGH SPEED....... 2.32
Illustration 2.H.1.19: Releasing Tong Jaws Following Break Out & Un-threading 2.32
Illustration 2.H.1.20: Un-clamping Backup Jaws.. 2.33
Illustration 2.H.1.21: Lowering Assembly Using Lift Cylinder Control........ 2.33
Illustration 3.D.1: Cage Plate Roller Lubrication... 3.2
Illustration 3.D.2: Idler Shaft Bearing Lubrication.. 3.2
Illustration 3.D.3: Reduction Gear Bearing Lubrication.................................. 3.3
Illustration 3.D.4: Door Pivot Shaft Lubrication... 3.3
Illustration 3.D.5: Door Latch & Post Lubrication.. 3.4
Illustration 3.D.6: Jaw Assembly Lubrication... 3.4
Illustration 3.D.7: Load Cell Lubrication.. 3.5
Illustration 3.E.1: Brake Band Adjustment.. 3.5
Illustration 3.E.2: Safety Door Plunger Adjustment 01..................................... 3.6
Illustration 3.E.3: Safety Door Plunger Adjustment 02..................................... 3.6
Illustration 3.E.4: Safety Door Plunger Adjustment 03..................................... 3.7
Illustration 3.H.1: Gearbox Cover Installation... 3.10
Illustration 3.H.2: Idler Gear Installation... 3.11
Illustration 3.H.3: Rotary Gear Assembly.. 3.11
Illustration 3.H.5: Main Body Fastener Placement.. 3.12
Illustration 3.H.6: Door Latch Weldment Installation...................................... 3.13
Illustration 3.H.7: Door Detent Installation... 3.14
Illustration 6.A.1: Torque Gauge... 6.1
Illustration 6.A.3: Compression Load Cell... 6.1
Illustration 6.A.4: Tension Load Cell Exploded... 6.1
Illustration 6.A.5: Compression Load Cell Exploded....................................... 6.4
Illustration 6.A.6: Turn Counter Encoder Mount Exploded............................. 6.5
The information presented in this document will provide setup, operating, and maintenance instructions for your SL4500 tong. Due to the wide variety of operating conditions, these instructions must be considered guidelines rather than absolute operating procedures. It is the responsibility of the user to use these guidelines together with an experienced manager to develop operating procedures that conform to all policies set forth by the operating authority (ies).

IDENTIFICATION OF WARNINGS AND OTHER NOMENCLATURE OF IMPORTANCE USED IN THIS INSTALLATION GUIDE

Farr Canada Corp. uses three indicators to describe items of three degrees of importance.

A **HAZARD** to operators or equipment is represented by an exclamation point within a red triangle and identifies items of the highest importance. Failure to heed information identified by a **HAZARD** symbol may result in bodily injury, death, catastrophic equipment damage, or any combination of these. A **HAZARD** may also indicate the potential for dangerous environmental contamination.

This identifies a **HAZARD** to operators or equipment

A **WARNING** is represented by an exclamation point within an orange triangle, and contains information that will alert personnel to a potential safety hazard that is not life-threatening. A **WARNING** may also serve to alert the user to information critical to the correct assembly or operation of the equipment in use.

This identifies a **WARNING** to users

A **CAUTION** is represented by an exclamation point within a yellow triangle and highlights information that may aid the user during assembly or operation of your equipment. **CAUTIONs** are also used to ensure common errors are not made during assembly or operation of your equipment.

This identifies a **CAUTION** to users

Observance of the following is the full responsibility of the user:

- all descriptions, information and instructions set out in this manual
- any regulation or requirement issued by an authority or agency which may influence operation, safety or integrity of the equipment that overrules the content of this document.
- any legal or other mandatory regulation in force governing accident prevention or environmental protection.
Congratulations on the purchase of your FARR® SL4500 4-1/2" “Slim” tong. This unit will provide you with years of outstanding performance. Simple maintenance and care will extend its life and ensure years of excellent performance and reliability. The setup, operating, and maintenance instructions in this manual will assist you in giving your equipment the care it requires. Please carefully read the manual before installing and using your equipment. Replacement parts are readily available from McCoy Drilling & Completions | FARR in Edmonton Alberta. Note that many parts are transferable between FARR® tongs and backups. Should you need replacement parts, or should you experience any difficulty not covered in this manual, please contact:

McCoy Drilling & Completions | FARR
14755 121A Avenue
Edmonton, Alberta
Canada T5L 2T2
Phone: 780.453.3277
Fax: 780.455.2432
Sales Fax: 780.481.9246
Email Engineering: engFarr@mccoyglobal.com
Email Sales: salesFarr@mccoyglobal.com
Website: http://www.mccoyglobal.com/index.php/drilling-completions

Illustration 1.A.1: SL4500 Tong & Backup
PLEASE NOTE: AREAS SHOWN HIGHLIGHTED ARE POTENTIAL PINCH/HAZARD AREAS. EXERCISE CAUTION AROUND THESE AREAS DURING TONG OPERATION.
Torque Table (Low Torque) **

<table>
<thead>
<tr>
<th>Pressure (PSI)</th>
<th>Hi Speed (lbs.-ft.)</th>
<th>Lo Speed (lbs.-ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>660</td>
<td>2300</td>
</tr>
<tr>
<td>1500</td>
<td>1060</td>
<td>3700</td>
</tr>
<tr>
<td>2000</td>
<td>1485</td>
<td>5200</td>
</tr>
<tr>
<td>2500</td>
<td>1885</td>
<td>6500</td>
</tr>
</tbody>
</table>

MAXIMUM RATED TORQUE: 6500 LBS.-FT.

Torque Table (High Torque) **

<table>
<thead>
<tr>
<th>Pressure (PSI)</th>
<th>Hi Speed (lbs.-ft.)</th>
<th>Lo Speed (lbs.-ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1400</td>
<td>2800</td>
</tr>
<tr>
<td>1500</td>
<td>2300</td>
<td>4600</td>
</tr>
<tr>
<td>2000</td>
<td>3150</td>
<td>6300</td>
</tr>
<tr>
<td>2500</td>
<td>4000</td>
<td>8000</td>
</tr>
</tbody>
</table>

MAXIMUM RATED TORQUE: 8000 LBS.-FT.

Speed Table (Low Torque) **

<table>
<thead>
<tr>
<th>Flow (US GPM)</th>
<th>Lo Speed (RPM)</th>
<th>Hi Speed (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>32</td>
<td>111</td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>166</td>
</tr>
</tbody>
</table>

Speed Table (High Torque) **

<table>
<thead>
<tr>
<th>Flow (US GPM)</th>
<th>Lo Speed (RPM)</th>
<th>Hi Speed (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>40</td>
<td>26</td>
<td>51</td>
</tr>
<tr>
<td>60</td>
<td>39</td>
<td>76</td>
</tr>
</tbody>
</table>

** These are ideal values. Actual achieved torque is highly dependant upon tong efficiency and final position of rotary gear when full torque load is reached.

Max. Hydraulic Requirements: 60 GPM (227.1 LPM) / 3000 PSI (20.684 MPa)
Max Hydraulic Fluid Temp: 82°C
Operating Temperature: -20°C to +40°C
Length: 39-7/8" / 101.3 cm
Overall Width: 20" / 50.8 cm
Height: 48-1/2" / 123.2 cm
Torque arm length: 24-3/4 inches / 62.9 cm (Tong only) (Center Line of Pipe Center Line of Anchor Handle)
18 inches / 45.7 cm (Tong & Backup)
Weight (Approximate): 600 lb. / 273 kg. (Tong Only)
1000 lb. / 444.4 kg. (Tong & Backup)
Jaw Range: 1.90" (48.25 mm) - 5.00" (127 mm) Diameter Pipe
Jaws available (inches): See Pp. 2.13
Max Sound Level: 97 dBA @ 1m
96 dBC @ 1m

** REPLACEMENT FASTENERS (BOLTS, NUTS, CAP SCREWS, MACHINE SCREWS, ETC.) MUST BE GRADE 8 OR EQUIVALENT UNLESS OTHERWISE SPECIFIED.**
Use an EP synthetic grease that meets or exceeds the following specifications:

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickener</td>
<td>Lithium Complex</td>
</tr>
<tr>
<td>NLGI consistency grade</td>
<td>2</td>
</tr>
<tr>
<td>NLGI performance grade</td>
<td>GC-LB</td>
</tr>
<tr>
<td>Penetration - ASTM D 217 (25°C [77°F])</td>
<td>265-295 minimum</td>
</tr>
<tr>
<td>0.1 mm worked 60 strokes</td>
<td></td>
</tr>
<tr>
<td>Dropping point, °F[-C] - ASTM D2265</td>
<td>550 [288] minimum</td>
</tr>
<tr>
<td>High temperature life, hours - ASTM D 3527</td>
<td>160 minimum</td>
</tr>
<tr>
<td>Oxidation stability, psi - ASTM D 942</td>
<td>(100 hr/300 hr) 0/3</td>
</tr>
<tr>
<td>Water washout, percent - ASTM D 1264</td>
<td>1.8 max</td>
</tr>
<tr>
<td>Rust and corrosion - ASTM D 1743</td>
<td>pass</td>
</tr>
<tr>
<td>Oil separation, percent loss - ASTM D 1742</td>
<td>1.1 max</td>
</tr>
<tr>
<td>(24 hours, 25°C [77°F])</td>
<td></td>
</tr>
<tr>
<td>Leakage, g lost - ASTM D 4290</td>
<td>1.0 max</td>
</tr>
<tr>
<td>Four ball wear test, mm scar - ASTM D 2266</td>
<td>0.40 max</td>
</tr>
<tr>
<td>Fretting wear, mg - ASTM D 4170</td>
<td>3.4 max</td>
</tr>
<tr>
<td>Four ball EP, kgf - ASTM D 2596</td>
<td></td>
</tr>
<tr>
<td>Weld point</td>
<td>400 minimum</td>
</tr>
<tr>
<td>Load wear index</td>
<td>50 minimum</td>
</tr>
<tr>
<td>Timken OK load test, lbs - ASTM D 2509</td>
<td>50</td>
</tr>
<tr>
<td>Low temperature torque, N*m - ASTM D 4693</td>
<td>1.3 max</td>
</tr>
<tr>
<td>(-40°C [-40°F])</td>
<td></td>
</tr>
<tr>
<td>LT-37 pumpability, g/min (60°F/0°F [16°C/-18°C])</td>
<td>360/7</td>
</tr>
<tr>
<td>Copper corrosion - ASTM D 4048</td>
<td>1B</td>
</tr>
<tr>
<td>Disc brake wheel bearing specifications</td>
<td></td>
</tr>
<tr>
<td>Ford ESA-M1C 198A</td>
<td>Yes</td>
</tr>
<tr>
<td>Chrysler MS-3701</td>
<td>Yes</td>
</tr>
<tr>
<td>Oil viscosity: 40°C [104°F], cSt</td>
<td>151</td>
</tr>
<tr>
<td>100°C [212°F], cSt</td>
<td>19.2</td>
</tr>
<tr>
<td>Flash point, °F[-C] - ASTM 92</td>
<td>450[232]</td>
</tr>
</tbody>
</table>

Use a premium quality hydraulic fluid that meets or exceeds the following specifications:

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Density (kg/m3)</td>
<td>878</td>
</tr>
<tr>
<td>Viscosity - cSt @ 40 °C</td>
<td>68.8</td>
</tr>
<tr>
<td>- cSt @ 100 °C</td>
<td>8.7</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>97</td>
</tr>
<tr>
<td>Pour Point °F [-C]</td>
<td>-22 [-30]</td>
</tr>
<tr>
<td>Flash Point °F [-C]</td>
<td>432 [222]</td>
</tr>
<tr>
<td>Colour, ASTM</td>
<td>1.5</td>
</tr>
<tr>
<td>Neutralization Number</td>
<td>0.40</td>
</tr>
<tr>
<td>Rust Protection - Distilled Water</td>
<td>No Rust</td>
</tr>
<tr>
<td>- Sea Water</td>
<td>No Rust</td>
</tr>
<tr>
<td>Hydrolytic Stability - Cu Mass Loss, mg/cm2</td>
<td>0.04</td>
</tr>
<tr>
<td>Copper Corrosion Test</td>
<td>1A</td>
</tr>
<tr>
<td>Filterability: Denison - Wet & Dry</td>
<td>Pass</td>
</tr>
<tr>
<td>Afnor - Wet & Dry</td>
<td>Pass</td>
</tr>
<tr>
<td>Cincinnati Milacron Spec Approved</td>
<td>P69</td>
</tr>
<tr>
<td>Denison HF-0: Approved</td>
<td>Approved</td>
</tr>
<tr>
<td>Denison P-46 Piston Pump:</td>
<td>Pass</td>
</tr>
<tr>
<td>Denison T6C Vane Pump:</td>
<td>Pass</td>
</tr>
<tr>
<td>Vickers 35VQ25 Vane Pump Test:</td>
<td>No Data Available</td>
</tr>
<tr>
<td>104/105C Vane Pump Test:</td>
<td><10</td>
</tr>
<tr>
<td>Vane pump test total ring and vane wear, mg</td>
<td></td>
</tr>
<tr>
<td>Oxidation Stability</td>
<td></td>
</tr>
<tr>
<td>Turbine Oil Stability Test Life, hours</td>
<td>2500+</td>
</tr>
<tr>
<td>Rotary Bomb Oxidation Test, minutes</td>
<td>325</td>
</tr>
<tr>
<td>FZG Spur Gear Test, Failure Load Stage (FLS)</td>
<td>12</td>
</tr>
</tbody>
</table>
Adequate setup and proper hydraulic connections are essential in ensuring reliable operation of your tong. For best results and long term reliability, read and obey the start-up instructions in this section.

DO NOT ACCESS ROTATING COMPONENTS UNLESS HYDRAULIC POWER SUPPLY HAS BEEN DEACTIVATED OR ISOLATED.

A CLEARLY IDENTIFIED REMOTE POWER PACK EMERGENCY STOP MUST BE INSTALLED IN THE IMMEDIATE VICINITY OF THE TONG OPERATOR.

A. SLING / LOAD BEARING DEVICE SAFETY

THE SUPPLIED LOAD-BEARING DEVICE (CHAIN SLING, RIGID SLING, SPREADER BAR ASSEMBLY, FRAME, OR ANY OTHER DEVICE THAT BEARS THE PARTIAL OR TOTAL WEIGHT OF THE EQUIPMENT DESCRIBED IN THIS MANUAL) HAS BEEN SPECIFIED OR DESIGNED TO SUPPORT THE EQUIPMENT DESCRIBED IN THIS DOCUMENT. FARR WILL NOT GUARANTEE THE ABILITY OF THE LOAD-BEARING DEVICE TO SUPPORT ANY OTHER PART, ASSEMBLY OR COMBINATION OF PARTS AND ASSEMBLIES, OR ANY ADDITIONS TO THE EQUIPMENT DESCRIBED IN THIS MANUAL THAT ADD WEIGHT TO THE EQUIPMENT, UNLESS SUPPLIED BY FARR CANADA CORP..

FARR CANADA CORP. DOES NOT GUARANTEE THE INTEGRITY OF MODIFIED OR DAMAGED LOAD-BEARING DEVICES, UNLESS THOSE MODIFICATIONS ARE PERFORMED BY FARR CANADA CORP..

McCoy Drilling & Completions recommends following an industry-accepted standard such as OSHA, ASME B30.9-2006, or manufacturer’s guidelines when performing any rigging and overhead lifting. Use by untrained persons is hazardous. Improper use will result in serious injury or death. Do not exceed rated capacity. Slings will fail if damaged, abused, misused, overused, or improperly maintained.

- Only grade 80 or grade 100 alloy chain should be used for overhead lifting applications.
- Working Load Limit (WLL) is the maximum allowable load in pounds which may be applied to the load-bearing device, when the device is new or in “as new” condition, and when the load is uniformly and directly applied. The WLL must never be exceeded.
- Working Load Limit (WLL) is the maximum working load for a specific minimum sling angle, measured from the horizontal plane. The Working Load Limit is identified on the sling.
- The Working Load Limit or Design factor may be affected by wear, misuse, overloading, corrosion, deformation, intentional alterations, sharp corner cutting action and other use conditions.
- Shock loading and extraordinary conditions must be taken into account when selecting alloy chain slings.

THE MINIMUM SLING ANGLE (THE ANGLE OF THE LEG OF THE SLING MEASURED FROM THE HORIZONTAL) MUST NEVER FALL LOWER THAN THE ANGLE SPECIFIED FOR THE SLING IN USE

![Illustration 2A.1: Sling Angle](image-url)
1. Inspection Of Slings

Farr Canada Corp. strongly recommends the following practices:

A complete inspection of new load-bearing devices and attachments shall be performed by a qualified, designated person prior to initial use. Each link and component shall be examined individually, taking care to expose and examine all surfaces including the inner link surface. The sling shall be examined for conditions such as those listed in the removal criteria below. In addition, daily inspection of slings, fastenings and attachments shall be performed by a designated person. If damage or defects are found at either inspection, the damaged or defective component shall be quarantined from service until it can be properly repaired or replaced.

Removal Criteria:

A load-bearing device shall be removed from service if conditions such as the following are present:

- Missing or illegible sling identification.
- Cracks or breaks
- Evidence of tampering is seen - sling tag has been modified or obscured, or tamper-proof nuts are missing.
- Signs of impact on load-bearing components, including spreader bars, lifting lugs, rigid slings & rigid sling weldments, and legs & leg mounts.
- Broken or damaged welds.
- Excessive wear, nicks, or gouges. Refer to the chart below to ensure minimum thickness on chain links supplied is not below the values listed:

Minimum Allowable Chain Link Thickness at Any Point

<table>
<thead>
<tr>
<th>Nominal Chain Size</th>
<th>Minimum Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches 7/32</td>
<td>MM 5.5 0.189</td>
</tr>
<tr>
<td>9/32</td>
<td>7 0.239</td>
</tr>
<tr>
<td>5/16</td>
<td>8 0.273</td>
</tr>
<tr>
<td>3/8</td>
<td>10 0.342</td>
</tr>
<tr>
<td>1/2</td>
<td>13 0.443</td>
</tr>
<tr>
<td>3/4</td>
<td>16 0.546</td>
</tr>
<tr>
<td>7/8</td>
<td>22 0.750</td>
</tr>
<tr>
<td>1</td>
<td>26 0.887</td>
</tr>
<tr>
<td>1-1/4</td>
<td>32 1.091</td>
</tr>
</tbody>
</table>

Refer To ASME B30.9

- Stretched, bent, twisted, or deformed chain links or components.
- Evidence of heat damage.
- Excessive pitting or corrosion.
- Lack of ability of chain or components to hinge (articulate) freely.
- Weld splatter.
- For hooks, removal criteria as stated in ASME B30.10
- Other conditions, including visible damage, that cause doubt as to the continued use of the sling.

Inspect all lugs and fixing points for signs of elongation and/or bending, or for material build-up around the hole. Repair or replace components that appear distorted. Ensure all hardware is tight and in good condition. Replace missing hardware if necessary. All hardware must be free of rust and corrosion.

Additional inspections shall be performed during sling use where service conditions warrant. Periodic inspection intervals shall not exceed one year. The frequency of periodic inspections should be based on:

- Frequency of use of the load-bearing device.
- Severity of service conditions
- Nature of lifts being made
- Experience gained on the service life of load-bearing devices used in similar circumstances.

Guidelines for the interval are:

- Normal Service: Yearly
- Severe Service: Monthly to quarterly
- Special Service: As recommended by a qualified person
Units designed and manufactured in accordance with EN 12079 and DNV 2.7-1 should be tested and examined in accordance with the following schedule of examination and test. The user of the load-bearing device shall place a permanent placard or plate upon which the type and date of the last test shall be recorded. To avoid confusion, the plate shall not carry the date of the next test or examination, only the most recent.

<table>
<thead>
<tr>
<th>Time / Interval</th>
<th>Lifting Tests(^1)</th>
<th>Non-Destructive Examination (NDE) of Lifting Points</th>
<th>Thorough Visual Examination</th>
<th>Suffix To Be Marked On Plate Attached To Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Certification By Farr / Superior</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>T</td>
</tr>
<tr>
<td>Interval Not Exceeding 12 Months</td>
<td>At the discretion of inspection body</td>
<td>At the discretion of inspection body</td>
<td>YES</td>
<td>T or VN(^2)</td>
</tr>
<tr>
<td>Interval Not Exceeding 60 Months</td>
<td>At the discretion of inspection body</td>
<td>YES</td>
<td>YES</td>
<td>T or VN</td>
</tr>
<tr>
<td>Following Substantial Repair or Alteration(^4)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>T</td>
</tr>
</tbody>
</table>

1. Lifting test as per S 7.3 BS EN 12079 or DNV 2.7-1 May 1995
2. T = Proof Test, non-destructive examination; VN = non destructive examination and visual examination; V = visual examination.
3. Dependant upon whether non-destructive examination has been carried out.
4. For the purposes of this standard, a substantial repair or modification is defined as any repair and/or modification that has been carried out which may, in the opinion of the inspection body, affect the load-bearing elements of the container or lifting device, or elements that contribute directly to its structural integrity.

IF MECHANICAL DAMAGE IS SEEN OR SUSPECTED ON A LOAD-BEARING DEVICE, OR IF THE LOAD-BEARING DEVICE HAS BEEN OVERLOADED, IT MUST BE REMOVED FROM SERVICE AND QUARANTINED UNTIL RECERTIFIED

Written records of the most recent periodic inspection shall be maintained, and shall include the condition of the sling.

2. **Proper Use Of Load-Bearing Devices**

 Whenever any load-bearing device is used, the following practices shall be observed.
 - Load-bearing devices that are damaged or defective shall not be used.
 - Slings shall not be shortened with knots or bolts or other makeshift devices.
 - Sling legs shall not be kinked.
 - Load-bearing devices shall not be loaded in excess of their rated capacities.
 - Slings shall be securely attached to their load.
 - Load-bearing devices shall be protected from snagging, and shall not be further obstructed by any object.
 - Suspended loads shall be kept clear of all obstruction.
 - All employees shall be kept clear of loads about to be lifted and of suspended loads.
 - Hands or fingers shall not be placed between the sling and its load while the sling is being tightened around the load.
 - Shock loading is prohibited.
 - Do not stand directly under a load during lifting.

3. **Storage Of Load-Bearing Devices**

 Proper storage of out-of-service load bearing devices is important to ensure full integrity of the device once it is returned to service. Farr recommends observing the following practices:
 - Wipe off all excess grease. Use a solvent-based cleaner on rags to wipe all external surfaces to remove residual grease or hydraulic fluid. Once the outside surfaces have been de-greased, wipe all external surfaces with clean water to remove residual solvent.
 - Farr recommends that an anti-corrosive agent such as Tectyl\(^\circledR\) 506 be applied to all external surfaces. Refer to manufacturer data sheets for proper application and safety information. Allow the anti-corrosive coating ample time to dry - refer to manufacturer data sheets for drying times at room temperature.
 - Store in a clean, dry location. When returning to service, note that a full inspection of the device must be performed.
B. MAJOR COMPONENT IDENTIFICATION

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rigid Sling</td>
</tr>
<tr>
<td>2</td>
<td>Tong</td>
</tr>
<tr>
<td>3</td>
<td>Backup</td>
</tr>
<tr>
<td>4</td>
<td>Front Leg Assembly</td>
</tr>
<tr>
<td>5</td>
<td>Hydraulic Valve Assembly & Mounting Plate</td>
</tr>
<tr>
<td>6</td>
<td>Rear Leg Assembly</td>
</tr>
</tbody>
</table>

Illustration 2.B.1: Component Identification 01
Setup & Operation

SL4500 4-1/2” “SLIM” Tong

Illustration 2.B.2: Component Identification 02

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Backing Pin Assembly</td>
</tr>
<tr>
<td>8</td>
<td>Cage Plate Assembly</td>
</tr>
<tr>
<td>9</td>
<td>Tong Jaws with Die Inserts</td>
</tr>
<tr>
<td>10</td>
<td>Safety Door Plunger & Guard</td>
</tr>
<tr>
<td>11</td>
<td>Tong Door Latch</td>
</tr>
<tr>
<td>12</td>
<td>Tong Door</td>
</tr>
<tr>
<td>13</td>
<td>Tong Leveling Adjustment</td>
</tr>
</tbody>
</table>
SL4500 4½” “Slim” Tong

Section Contents

Setup & Operation

Illustration 2.B.3: Component Identification 03

Illustration 2.B.4: Component Identification 04

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Safety Door Valve</td>
</tr>
<tr>
<td>15</td>
<td>Hydraulic Motor</td>
</tr>
<tr>
<td>16</td>
<td>Brake Band</td>
</tr>
<tr>
<td>17</td>
<td>Brake Band Adjustment</td>
</tr>
</tbody>
</table>
Illustration 2.B.5: Component Identification 05

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Compression Load Cell</td>
</tr>
<tr>
<td>19</td>
<td>Rear Backup Float Spring Assembly</td>
</tr>
<tr>
<td>20</td>
<td>Load Cell Spacer</td>
</tr>
</tbody>
</table>
C. HYDRAULIC SCHEMATIC & VALVE IDENTIFICATION

The following hydraulic schematic illustrates the hydraulic controls of a fully equipped tong and backup assembly. Your specific equipment may or may not have all hydraulic controls as illustrated.

![Hydraulic Schematic](image)

Illustration 2.C.1: Hydraulic Schematic 01

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inlet Valve c/w safety door cartridge</td>
<td>101-3927A</td>
<td>2.10</td>
</tr>
<tr>
<td>2</td>
<td>Relief Valve (type varies with model)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pilot-To-Open Valve, Sun LKHC-XDN</td>
<td>08-1625</td>
<td>2.11</td>
</tr>
<tr>
<td>4</td>
<td>Motor Section, DVA35-MA8, 4-WAY SAE PORTS</td>
<td>10-9014</td>
<td>2.10</td>
</tr>
<tr>
<td>5</td>
<td>Backup Section, DVA35-DA8, SAE PORTS</td>
<td>10-9019</td>
<td>2.10</td>
</tr>
<tr>
<td>6</td>
<td>Lift Cylinder Section, DVA35-SA8, (1" ORB PORT)</td>
<td>10-9015</td>
<td>2.10</td>
</tr>
<tr>
<td>7</td>
<td>Outlet Section, DVA35-TR99, SAE PORT</td>
<td>10-0066</td>
<td>2.10</td>
</tr>
<tr>
<td>8</td>
<td>Flow Control Valve, Parker N800S (Not Shown)</td>
<td>08-9062</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Safety Door Switch</td>
<td>08-0337</td>
<td>2.11</td>
</tr>
<tr>
<td>10</td>
<td>Motor Shift Valve, Bailey ED Series 220-906</td>
<td>10-9035</td>
<td>2.10</td>
</tr>
<tr>
<td>11</td>
<td>Check Valve</td>
<td>08-9022</td>
<td>2.11</td>
</tr>
<tr>
<td>12</td>
<td>Rineer GA15-13/6.5 Hydraulic Motor (High Torque Version)</td>
<td>87-0008</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>Rineer GA15-10.5/3 Hydraulic Motor (Low Torque Version)</td>
<td>87-0010</td>
<td>2.11</td>
</tr>
<tr>
<td>13</td>
<td>DVA35 Transition Plate</td>
<td>101-3935</td>
<td>2.10</td>
</tr>
<tr>
<td>14</td>
<td>3000 psi Pressure Gauge</td>
<td>02-0246</td>
<td>Not Shown</td>
</tr>
<tr>
<td>15</td>
<td>Valve Body</td>
<td>08-1327</td>
<td>2.11</td>
</tr>
<tr>
<td>16</td>
<td>Pilot-To-Open Check Valve, Sun CKEB-XCN</td>
<td>08-0481</td>
<td>2.11</td>
</tr>
<tr>
<td>17</td>
<td>Relief Valve, Sun RPCC-KAN</td>
<td>08-1749</td>
<td>Not Shown</td>
</tr>
<tr>
<td>18</td>
<td>Relief Valve Block, Sun AAI</td>
<td>08-1750</td>
<td>Not Shown</td>
</tr>
<tr>
<td>19</td>
<td>Backup Clamp Cylinder (Inside Backup)</td>
<td>101-4336</td>
<td>2.10</td>
</tr>
</tbody>
</table>
ILLUSTRATION 2.C.2: HYDRAULIC COMPONENT IDENTIFICATION 01

ILLUSTRATION 2.C.3: HYDRAULIC COMPONENT IDENTIFICATION 02
ILLUSTRATION 2.C.4: HYDRAULIC COMPONENT IDENTIFICATION 03
D. HYDRAULIC CONNECTIONS

A pair of hydraulic lines - a 1" supply line and a 1-1/4" return line - connect the tong to the power unit (see illustration below). Ancillary devices (hydraulic motors, hydraulic cylinders, etc.) are connected through the valve block.

Perform any hydraulic connection when the power unit is not running, or when the hydraulic pump is disengaged. The possibility of error in inter-changing the high pressure supply hose and the low pressure return hose has been eliminated, because the supply side coupling is smaller than the return side.

THE INLET & OUTLET HYDRAULIC HOSES ANTI-WHIPLASH LANYARDS MUST BE ATTACHED TO THE TONG WITH ANTI-WHIPLASH LANYARDS

Illustration 2.D.1: Hydraulic Connections 01

These hose couplings are self-sealing, and care should be taken to ensure complete engagement to prevent partial closure of the check valve in the coupling. Ensure that the nut (female) side is completely made up onto the male connector - there is a line on the male fitting that indicates complete make-up. Snug the female fitting right up to the line.

Illustration 2.D.2: Hydraulic Connections 02
E. TONG JAW AVAILABILITY & INSTALLATION

1. Jaw Availability

The following table lists all jaw die kits that are available as standard stocked sizes for this model of tong. McCoy Drilling & Completions | Farr offers a good selection of standard jaw sizes. However, please note that we can custom-engineer and manufacture any size of jaw within the range of the tong. Jaw systems are available to allow use of die inserts intended for specialized applications. Call our sales office for information on jaw and die systems designed for higher or lower grip, or non-marking applications.

The table lists standard contoured, flat and wraparound die inserts that are available as spare parts. However, a wide variety of diamond-tooth, GRITFACE®, aluminium, and wrap-around fine-tooth dies are available for specialized applications. Please refer to our website for complete information:

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9” Jaw Die Kit</td>
<td>SL4500-JDK-1900</td>
<td>1.9” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-1900</td>
</tr>
<tr>
<td>2.063” Jaw Die Kit</td>
<td>SL4500-JDK-2063</td>
<td>2-3/8” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-2375</td>
</tr>
<tr>
<td>2-3/8” Jaw Die Kit</td>
<td>SL4500-JDK-2375</td>
<td>2-7/8” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-2875</td>
</tr>
<tr>
<td>2-7/8” Jaw Die Kit</td>
<td>SL4500-JDK-2875</td>
<td>3” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-3000</td>
</tr>
<tr>
<td>3” Jaw Die Kit</td>
<td>SL4500-JDK-3000</td>
<td>3.1875” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-3187</td>
</tr>
<tr>
<td>3.068” Jaw Die Kit</td>
<td>SL4500-JDK-3068</td>
<td>3-1/2” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-3500</td>
</tr>
<tr>
<td>3-1/2” Jaw Die Kit</td>
<td>SL4500-JDK-3500</td>
<td>3-5/8” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-3625</td>
</tr>
<tr>
<td>3-5/8” Jaw Die Kit</td>
<td>SL4500-JDK-3625</td>
<td>4” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-4000</td>
</tr>
<tr>
<td>3.668” Jaw Die Kit</td>
<td>SL4500-JDK-3668</td>
<td>4-1/2” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-4500</td>
</tr>
<tr>
<td>4” Jaw Die Kit</td>
<td>SL4500-JDK-4000</td>
<td>5” Wrap Around Jaw Die Kit</td>
<td>SL4500-WJDK-5000</td>
</tr>
<tr>
<td>4-1/2” Jaw Die Kit</td>
<td>SL4500-JDK-4500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All jaw die kits except “Wraparound” use flat die P/N 12-1003MOD
Contact Farr Sales for “Wraparound” dies.

If necessary the entire jaw may be removed. Support the jaw from the bottom and remove the jaw retainer bolt. The jaw may then be slid out of and away from the cage plate. Reverse this procedure to replace the jaw assemblies.

ILLUSTRATION 2.E.1: TONG JAW REMOVAL
To release dies from a jaw assembly, remove the retaining bolts and slide dies out. Repeat this procedure in reverse to install new dies.

ILLUSTRATION 2.E.2: TONG JAW DIE REPLACEMENT

2. **Backup Jaws**
 The jaw die kits used in the Farr backup are identical to those used in the “slim” tong (see previous page). Follow the same removal and installation instructions as for the tong jaw die kits.

3. **Tong Handles**
 Tong handles may be supplied as an accessory with this tong. They may be removed for operational needs and requirements.

F. TONG RIG-UP & LEVELING

1. **Suspension & Restraint**
 Suspend the tong and backup from a location as near to the centre of the drill rotary as possible, and from a location high enough on the mast to ensure easy handling. The lower the point from which the tong is suspended, the more effort will be required to move the tong to and from the connection point.

 The suspension line may be extended over a pulley and balanced by a counterweight equal to the weight of the tong and backup, or simply tied off in the derrick to form a dead line. When using a dead line arrangement it is necessary to use a FARR spring hanger assembly (see specification page for recommended spring hanger). This spring hanger compensates for the downward movement of the casing as the thread is made-up, and imparts additional force to the suspension cable:

 - a “single spring” hanger typically applies 420 lbs. (191 kg.) to the suspension line for every inch of thread made up
 - a “double spring” hanger typically applies 840 lbs. (382 kg.) to the suspension line for every inch of thread made up

 If you do not know which specific spring hanger is in use, check the specification page in this manual for information on the recommended spring hanger for this application. McCoy Drilling & Completions will not guarantee or specify spring hangers other than what has been supplied by McCoy.

 Many applications use a lift cylinder for adjusting the height of the tong. Ensure the weight of the lift cylinder is known if it has not been included in the total weight of the tong.
Suspension & Restraint (continued):

All forces upon the suspension line must be considered when calculating necessary strength of the suspension line. The weight of the tong, the weight of the lift cylinder, the weight of the spring hanger, and the force imparted on the suspension line by the spring hanger must all be added together in order to arrive at the total force supported by the suspension line. Select your suspension line based upon the total force and the margins of safety dictated by the policies of your company and by established engineering practices. Ultimately, calculating the force on the suspension line and selection of the suspension line is the complete responsibility of the customer.

McCoy Drilling & Completions recommends using dual backup (snub) lines of sufficient strength to withstand the force imparted by the maximum rated torque of the tong and backup assembly in use. The snub lines will arrest uncontrolled movement of the tong and backup in the event slipping of the backup jaws. Calculate the force on the snub lines by dividing the maximum torque of the tong by the tong’s torque arm (expressed in feet). For example, an 8,000 lbs.-ft. tong with an 18 inch (1.5 ft.) torque arm will generate 5333 lbs. of force against the snub line. Select your snub lines based upon the total force and the margins of safety dictated by the policies of your company and by established engineering practices. Ultimately, calculating the force on the snub line and selection of the snub line is the complete responsibility of the customer.

Snub lines must be securely connected to the rear of the tong and backup assembly, and tied off to a suitable anchor.

FARR CANADA CORP. ACCEPTS NO RESPONSIBILITY FOR DESIGNING AND SELECTING AN ADEQUATE SUSPENSION AND RESTRAINT SYSTEM FOR YOUR DRILLING EQUIPMENT

ALL SELECTED FASTENERS, SHACKLES, CLAMPS, ETC. USED FOR CONSTRUCTING THE SUSPENSION AND SNUB LINES MUST BE RATED FOR THE CALCULATED FORCES.

2. Tong Leveling

The tong must be leveled side-to-side and front-to-rear before placing into service. The following guidelines will assist you when leveling your tong.

i. Lift the tong by the main lifting link. Place a level axially (side to side) across the tong, ensuring that it is parallel with the surface of the tong. If the tong is not hanging level, move the main link to an adjacent notch on the hanger to move the tong closer to the level position.

THE MASTER LINK MUST BE USED TO SUSPEND THE TONG ASSEMBLY

Illustration 2.F.1: Master Link
ii. Place a level lengthwise (front to back) along the tong, ensuring that it is parallel with the surface of the tong. Loosen the 1/2” locking nuts on the adjusting bolts on rigid sling brackets. Completely loosen the adjusting bolts. Turn each adjusting bolt equally until tong hangs level front-to-back. Lock adjusting bolts in place with the lock nuts.

ILLUSTRATION 2.F.2: TONG LEVELING

- Loosen locking nut before rotating adjustment bolt.
- Leveling adjustment bolt.
3. **Load Cell Configuration**

The backup is directly coupled to the compression load cell via the backup body paddle. The load cell hanger is simply hung in its slot on the paddle, and in normal operation does not need to be adjusted or removed. The assembly in the first of the following two illustrations has been configured in the "make-up" configuration; to convert the assembly to the "break-out" configuration simply lift the load cell holder / spacer assembly off the paddle, rotate it 180°, and replace - no tools are required for this operation.

![Load Cell - Makeup Configuration](image1)

![Load Cell - Breakout Configuration](image2)

Illustration 2.F.3: Load Cell Configuration
G. TONG OPERATION

1. Operator Training

Many companies set qualification standards that must be met before equipment is may be operated without supervision. McCoy Drilling & Completions recommends operator training, which typically consists of operation of the equipment under the supervision of a trained equipment operator until a satisfactory level of competence is achieved. Typical operator training should include:

- Introduction to and general description of equipment
- Technical specifications and performance data
- Operating instructions
- Control systems and interlocks
- Operating hazards
- Checks and inspections

2. Initial Start-up and Break-in Procedure

YOUR EQUIPMENT HAS BEEN THOROUGHLY TESTED AND INSPECTED AT THE FACTORY. HOWEVER, WE ADVISE INSPECTION AND TESTING OF YOUR NEW TONG AFTER TAKING POSSESSION IN ORDER TO ELIMINATE THE POSSIBILITY OF SHIPPING DAMAGE.

McCoy Drilling & Completions recommends that the following pre-operating tests be performed after receipt from the factory or after extended storage, prior to releasing the tong to operations:

- Perform a complete inspection of all fasteners to ensure none have loosened during transport.
- Connect the tong to the power unit, and apply full hydraulic pressure. Inspect and correct any leaks.
- Operate the tong at full speed and in high gear for a duration of one-half hour. Hot bearing caps may indicate impending bearing failure.
- Switch to low gear and operate for an additional one-half hour at full speed.
- Run the backup through several clamp/un-clamp sequences to ensure functionality.
- Inspect all components and hydraulic fittings for possible defects following completion of the tests. All FARR Tongs have been thoroughly tested at the factory prior to shipping, but shipping damage must be identified before running the tong in an operational environment.
- Carefully inspect the safety door components, and test to ensure that the safety device on each door is operating correctly before releasing the tong to the operating environment.

TONG DOOR MUST BE CLOSED AND SECURELY LATCHED BEFORE THE POWER UNIT IS STARTED IN ORDER TO ASSURE THE SAFETY OF OPERATING PERSONNEL

Ensure adequate lube oil and hydraulic oil levels before starting engine. Use start up procedures as recommended by the power unit engine operator’s manual. Open the Bypass Valve on the hydraulic system, and inspect all pressure and return line hose connections to ensure correct and secure installation.

IMPROPERLY SECURED HYDRAULIC CONNECTIONS WILL INTERRUPT HYDRAULIC FLUID FLOW, AND COULD RESULT IN THE FOLLOWING FAILURES:

- A restriction in the pressure supply hose will result in high pressure within the power unit hydraulic system, which will activate the hydraulic governor and increase the engine speed to as high as maximum RPM.
- A restriction in the return line will result in high pressure within the power unit and the tong hydraulic system, causing engine speeds as high as maximum RPM, and possible failure of the motor seal.

Following inspection of the hoses, start the engine and allow it to idle until warm. Allow hydraulic fluid to circulate for approximately 10 minutes, then slowly close the Bypass Valve to allow hydraulic fluid to circulate through the hoses and to the tong (circulating pressure should not exceed 200 psi). Place the tong gear shifter in low gear and rotate the tong slowly forward and then reverse with the throttle valve control lever. Once this has been done and the proper size jaws have been installed, the tong is then ready to run pipe.
3. **Valve Operation**

Proportional valves control operation of hydraulic devices on the tong assembly, such as hydraulic motors and cylinders. When any one valve is “centered” or in the detent position, there is no hydraulic output from the valve. When the valve is pushed forward there is an effect, and when the valve is pulled back, there is an opposite effect. These valves feature proportional control, which means that further extension of the valve handle (thereby further opening the valve orifice) results in proportionally higher hydraulic output to the controlled device. The following illustration demonstrates the type and effect of the hydraulic valves with which this tong is may be equipped.

TONG MOTOR

This is a proportional valve. Pushing the valve handle forward will cause the tong motor to rotate in a clockwise direction (as seen from the top of the tong). This is the desired direction of rotation for making up a joint. Pulling the valve handle in the opposite direction results in counter-clockwise rotation, which is the desired direction of rotation for breaking out a joint.

LIFT CYLINDER

This is a direct-acting valve. Pushing the valve handle forward will cause the lift cylinder to lift the tong vertically. Pulling the valve handle in the opposite direction will cause the lift cylinder to lower the tong.
BACKUP
This is a two-way direct acting valve, without proportional control. Pushing the valve handle forward will cause the backup to engage. Pulling backward, towards the operator, reverses the operation.

TONG SPEED
The motor speed valve offers safe and smooth adjustment of the tong speed without the need to manipulate gears in a gear train. Simply rotate the speed valve to change the speed of the motor. The simplicity of this system is particularly useful when making up or breaking out a joint.
4. GENERAL COMMENTS
 a) Position rotary gear in contact with both idler gears when breaking out joints or collars where high torques are required.
 b) When making-up integral (shouldered) joints, it is essential to make up the last turn of the threads in low gear. This reduces the tendency of an instant stop or a sudden increase in torque, which induces extremely high stresses on the gear train.
 c) DO NOT employ the “snap break” method of breaking-out joints when pulling a string. By definition, the “snap break” method is a procedure used by some operators to break out connections, accomplished by leaving slack in the “jaw-pipe” engagement, and then quickly pulling the throttle valve control lever allowing the tong to snap into its loaded or high torque condition. Although this method is very effective in breaking out joints, the extremely high stress placed on the gear train frequently causes gear breakage.

THE “SNAP-BREAK” METHOD IS HAZARDOUS TO RIG PERSONNEL

H. EXTREME COLD WEATHER OPERATION PROCEDURES
 1) Consult the power unit engine operator’s manual for all cold weather operating procedures and precautions.
 2) Select gear and bearing lubricants that are compatible with expected climatic conditions.
 3) Select hydraulic fluid that is compatible with expected climatic conditions.
 4) Allow hydraulic fluid to circulate for approximately 20 minutes after starting the power unit, prior to activating the bypass valve to allow fluid to circulate to tong. If the power unit is equipped with an oil temperature gauge, ensure that the fluid has reached operating temperature as specified by hydraulic fluid data sheet.
 5) Allow for adequate drying of moisture (prior to lubricating) when cleaning tong parts in cold weather.
I. MAKING AND BREAKING CONNECTIONS

Set up and prepare your equipment for operation as per Section 2 of the SL-4500 Technical Manual. Refer to the following sections:

- 2.D - Hydraulic Connections
- 2.E - Tong & Backup Jaw Installation
- 2.F.1 - Tong Rig-up and Leveling, Suspension
- 2.F.2 - Tong Rig-up and Leveling, Leveling
- 2.F.3 - Tong Rig-up and Leveling, Load Cell Configuration

Your tong and backup assembly should be properly suspended, connected to a hydraulic power source, and ready to make or break connections at this point.

THIS PROCEDURE ASSUMES THE USER HAS PROPERLY SET UP AND PREPARED THE EQUIPMENT FOR OPERATION AS PER SECTION 2 OF THE TECHNICAL MANUAL

1. Making Up A Connection

 a) Ensure hydraulic power supply to the tong and backup is energized. The master link on the rigid sling must be used to suspend the tong. Do not suspend the tong directly from the rigid sling.

 ![Illustration 2.I.1: Tong Suspension - Master Link](image)

 THE MASTER LINK MUST BE USED TO SUSPEND THE TONG ASSEMBLY

 b) Ensure the backing pin is in the "makeup" position. From the front of the tong, the backing pin correctly configured for makeup will be in the 10 o'clock position. If it is not, simply lift up and place in the correct position (see Illustration 2.I.2 next page). The cage plate opening must be aligned with the door opening when setting the backing pin position.
Making A Connection (continued):

c) Ensure the load cell is properly configured for making up connections. See Section 2.F.3 of the SL-4500 Technical Manual for correctly configuring your equipment.

d) McCoy Drilling & Completions recommends that backup pressure be pre-set for the size of tubing before starting the job (no tubing is required for this procedure):

- Backup clamping pressure is only displayed when the backup jaws are closed in the “clamp” position. Close the backup jaws using the backup control handle.

Illustration 2.1.2: Setting Backing Pin to “Make-up”

Illustration 2.1.3: Backup Control
Making A Connection (continued):

 d) Setting backup pressure (continued)
 • Observe the backup pressure as indicated on the “CLAMP” pressure gauge

 • Hydraulic pressure on the clamp cylinders must be relieved before the clamping pressure can be adjusted. Relieve pressure by pulling back on the backup control handle enough to actuate the relief, but not enough to retract the cylinder.
 • Use the backup pressure control knob to adjust the pressure. Turning the knob clockwise increases clamping pressure, and turning the control knob counter-clockwise decreases clamping pressure.

 Turn the knob in small increments i.e. 1/4 turn at a time, and check clamping pressure after every pressure adjustment. Ensure the pressure on the clamp cylinders is relieved before re-adjusting pressure.
Making A Connection (continued):

d) Setting backup pressure (continued)

 • If pressure data from previous jobs is unavailable, McCoy recommends setting the initial backup pressure to 1900 PSI and increase the pressure incrementally if required. If pressure data is available, set the final backup pressure to the pressure required for the job. Due to a wide variety of tubing wall thicknesses it is impossible to recommend optimum backup pressure settings from the factory for each size of tubing.

 • Retract clamp cylinders once backup pressure has been satisfactorily set.

e) Open the tong door. If your equipment is equipped with a safety door, opening the door will inhibit rotation of the cage plate.

f) Manually engage the threads of the tubing connection being made up. Ensure threads are not cross-threaded.
Making A Connection (continued):

 g) Actuate the lift cylinder control valve to lift the assembly from the drill floor. Pushing the valve toward the center of the tong will retract the lift cylinder to lift the assembly (see illustration 2.1.7 below). Note that rig personnel are required to stabilize the tong and backup as it is being lifted so it does not swing and collide with other rig equipment.

RIG PERSONNEL MUST STABILIZE THE TONG AND_backup AS IT IS LIFTED FROM THE DRILL FLOOR

h) Move the tong and backup assembly on to the tubing joint. Use the lift cylinder to ensure the assembly is at the correct height so that the backup jaws are located below the connection point, and the tong jaws are located above the connection joint.

i) Close the tong door. Ensure the door is securely latched (tug on the door handle to ensure it remains latched).

j) The “snub line” is a length of wire rope that connects the pad eye on the centre rear of the tong body to a sturdy post on the drill floor. The snub line prevents the tong body from spinning in the opposite direction of the cage plate when torque begins to build in the joint. The wire rope and shackles or connectors that make up the snub line must be appropriately rated for the applied torque - see Section 2.F.1. The snub line connection point on the drill floor must be sturdy enough to absorb all applied torque when making up the joints. When making up joints the snub line is attached to the driller’s side of the tong, which is the left side of the tong as seen from the rear.

k) Ensure tubing is roughly centered within the tong and backup jaws - rig personnel are required to stabilize the tong and backup around the connection until the jaws have been clamped shut. Actuate the backup clamping valve (push it toward the centre of the tong) to clamp the backup jaws on to the tubing below the connection point. Note that the backup control is “clamp and release”, meaning that once the backup jaws are clamped, the jaws remain under clamping pressure until the operator manipulates the backup control handle to release pressure (see Illustration 2.1.8).
Making A Connection (continued):

The motor speed control valve may be in one of three positions:

- **UP** - High speed selected
- **MIDDLE** - Neutral position
- **DOWN** - Low speed selected

If not already in the “high speed” position grasp the motor speed control valve and firmly lift up until it “latches” into its detent position. Gently push the rotation control valve toward the centre of the tong to slowly rotate the cage plate until the tong jaws grip the tubing (see Illustration 2.1.10 next page).
Making A Connection (continued):

m) When the tong jaws grip the tubing push the rotation control handle all the way in to thread the connection together at high speed. As the joint becomes fully made up the increasing torque demand will stall the motor, and system pressure and displayed torque will increase.

Illustration 2.I.10: Rotation Control - Makeup

Illustration 2.I.11: Torque & System Pressure Gauges on Gauge Panel
Making A Connection (continued):

n) When system pressure and torque begin to rise, switch to low speed:
 - Do not release the rotation control
 - Grasp the speed control knob and firmly push it down to the low speed setting. Motor speed decreases by 50 percent, and available torque doubles.

p) When proper makeup torque has been reached reverse the rotation control valve to release the tong jaws from the tubing.

Illustration 2.1.12: Switching Motor Speed Switch To Low Speed

Illustration 2.1.13: Reversing Rotation To Free Tong Jaws
Making A Connection (continued):

q) When tong jaws are free release the backup jaws by pulling the backup clamp control handle away from the tong toward the operator.

r) Unlatch and open the tong door to free the assembly from the tubing. Note that rig personnel may be required to stabilize the equipment as it completely releases from the tubing. Guide the assembly away from the string and use the lift cylinder control to lower it to the drill floor.

s) Repeat steps “e” through “r” until the desired number of connections are made up.
2. Breaking A Connection

a) Ensure hydraulic power supply to the tong and backup is energized. The master link on the rigid sling must be used to suspend the tong. Do not suspend the tong directly from the rigid sling. See Illustration 2.1.1.

b) Set the backing pin for “breakout” operation. Lift up on the backing pin and rotate it to the “breakout” position, which is 2 o’clock as seen from the front of the tong. The opening in the rotary gear must be aligned with the tong door opening in order to properly set the backing pin.

c) Pre-set the backup pressure before beginning your job. See Step 1 - d) of these operating procedures for detailed instructions for setting backup clamping pressure.

d) Ensure the load cell is configured for break-out operation. See Section 2.F.3 of the SL-4500 Technical Manual for detailed instructions for configuring the load cell on your equipment.

e) Transfer the snub line to the off-driller’s side of the tong (the right-hand side as seen from the rear).

f) Unlatch and open the tong door (see Illustration 2.1.6).

g) Actuate the lift cylinder control valve to lift the assembly from the drill floor. Pushing the valve toward the center of the tong will retract the lift cylinder to lift the assembly (see illustration 2.1.7). Note that rig personnel are required to stabilize the tong and backup as it is being lifted so it does not swing and collide with other rig equipment.

RIG PERSONNEL MUST STABILIZE THE TONG AND BACKUP AS IT IS LIFTED FROM THE DRILL FLOOR

h) Move the tong and backup assembly on to the tubing joint. Use the lift cylinder to ensure the assembly is at the correct height so that the backup jaws are located below the connection point, and the tong jaws are located above the connection joint.

i) Close the tong door. Ensure the door is securely latched (tug on the door handle to ensure it remains latched).
Breaking A Connection (continued):

j) Ensure tubing is roughly centered within the tong and backup jaws - rig personnel are required to stabilize the tong and backup around the connection until the jaws have been clamped shut. Actuate the backup clamping valve (push it toward the centre of the tong) to clamp the backup jaws on to the tubing below the connection point. Note that the backup control is “clamp and release”, meaning that once the backup jaws are clamped, the jaws remain under clamping pressure until the operator manipulates the backup control handle to release pressure (see Illustration 2.I.8).

k) The motor speed control valve may be in one of three positions:
 - **UP** - High speed selected
 - **MIDDLE** - Neutral position
 - **DOWN** - Low speed selected

Breakout torque is only available in the low-speed mode. If the motor speed control is not already in the “low speed” position grasp the motor speed control valve and firmly push down until it “latches” into its detent position. Gently pull the rotation control valve toward the operator to slowly rotate the cage plate until the tong jaws grip the tubing.

Illustration 2.I.17: Rotation Control - Break-out

l) Pull the rotation control handle all the way out to ensure full breakout torque is being delivered to the joint. When the joint releases, switch to high speed to completely un-thread the connection:
 - Do not release the rotation control
 - Grasp the speed control knob and firmly pull it all the way up to the high speed setting (see Illustration 2.I.18).

Release the rotation control handle when the connection completely un-threads.
Breaking A Connection (continued):

m) Release the jaws from the tubing after the connection has been broken and un-threaded. Push the rotation control handle toward the centre of the tong to rotate the cage plate in the "makeup" direction and release the jaws from the tubing.

Illustration 2.I.18: Switching Motor Speed Control To HIGH SPEED

Illustration 2.I.19: Releasing Tong Jaws Following Break Out & Un-threading
Breaking A Connection (continued):

n) When tong jaws are free release the backup jaws by pulling the backup clamp control handle away from the tong toward the operator.

Illustration 2.1.20: Un-clamping Backup Jaws

o) Unlatch and open the tong door to free the assembly from the tubing. Note that rig personnel may be required to stabilize the equipment as it completely releases from the tubing. Guide the assembly away from the string and use the lift cylinder control to lower it to the drill floor.

Illustration 2.1.21: Lowering Assembly Using Lift Cylinder Control

p) Use your rig's standard pipe handling procedures to remove and rack the freed tubing stand.

q) Repeat steps “g” through “p” as many times as necessary to breakout and un-thread the desired number of connections.
This page intentionally left blank
McCoy Completions & Drilling recognizes that minor on-site repairs and modifications are required to maintain peak operating condition of your equipment, or to match your equipment with the operating environment. Examples of minor repairs are

- replacement of damaged hydraulic hoses and fittings.
- replacement of malfunctioning pressure gauges and valves.
- replacement of door cylinders
- replacement of fasteners

Any replaced component must be an identical component supplied by McCoy Completions & Drilling. Replaced fasteners must be Grade 8 or equivalent, or whatever fastener is specified by McCoy.

A. GENERAL MAINTENANCE SAFETY PRACTICES

The practices identified here are intended as a guideline. All personnel are responsible for performing their tasks in a manner that ensures worker, equipment, and environmental safety, and may require taking additional steps that are not identified in this section.

Equipment maintenance shall be performed only by designated qualified maintenance personnel. Wear approved eye wear and footgear, and follow all of your company’s safety guidelines. Do not begin a maintenance task without the proper tools or materials on hand, or the proper drawings and documentation necessary.

Schedule planned maintenance with operators to avoid conflicts, unnecessary downtime, and the danger of accidental equipment activation. Notify operations when maintenance procedures are complete and equipment functionality is restored.

Isolate the location of the maintenance under way to prevent unaware personnel from inadvertently exposing themselves to a hazard. Use tape, rope, or signage to clearly indicate “off-limits” area.

Replacement of large, heavy individual parts and/or heavy structural components must be performed using an approved lifting device of sufficient lifting capacity. Use care when attaching the lifting device, and safeguard area to avoid endangering personnel or equipment.

All spare parts must meet or exceed OEM specifications in order to maintain equipment integrity, especially protective equipment. McCoy recommends that disconnection of hydraulic connectors be performed with the power unit off and the hydraulic circuit depressurized.

Your equipment uses materials that may be harmful to the environment if improperly disposed of (hydraulic fluid, grease, etc.). Dispose of all materials according to your company’s prescribed environmental protection regulations.

B. CLEANING

Clean tong thoroughly cleaned with a good petroleum-based cleaning agent after each job, prior to storage. Farr recommends that the motor and valve assembly be periodically removed, along with the top tong plate, so that guides, rollers and gears can be properly cleaned. Ensure that cleaning solvents and chemicals are captured to prevent environmental contamination, and dispose of all materials according to your company’s prescribed environmental protection regulations.

C. PREVENTIVE MAINTENANCE PRACTICES

Regular maintenance programs are necessary, and must be established to assure safe, dependable operation of your Hydraulic Tubular Connection System and to avoid costly breakdown maintenance. The following maintenance procedures provide information required to properly maintain your equipment. Your equipment may require more, or less maintenance depending upon the frequency of use and the field conditions under which your equipment operates. McCoy has also provided recommended maintenance checklists. The intervals in the maintenance checklists are designed for equipment operating at 10°C to 35°C ambient temperature for 10 hours per day. McCoy recommends that the inspection and maintenance procedures in this section be performed as recommended in the maintenance checklists, or in conjunction with your maintenance foreman’s experience and best estimate of when your equipment is due for this maintenance.

Purchased components included with your hydraulic tubular connection equipment (for example: motors, valves, etc.) may specify maintenance tasks and intervals over and above what McCoy recommends as part of their recommended procedures. Users of this equipment may choose to perform or ignore these additional tasks at their discretion.

Premature fouling of particulate filters within your prime mover or ancillary hydraulic power unit requires immediate hydraulic fluid laboratory analysis to prevent premature wear of hydraulic system due to high levels of wear metals in the fluid.

McCoy Completions & Drilling recommends tracking all maintenance activity including the lubrication schedule. This may be a simple as keeping a paper log, or using a software-based maintenance tracking utility. A maintenance log is a valuable tool that can be used for easily retrieving maintenance history or identifying trends that require correction.
D. LUBRICATION

Use a quality multipurpose bearing lubricant that will remain within its viscosity range at expected operating temperatures. In addition, Farr recommends the following lubrication procedure at the completion of each job prior to storage.

1. Cage Plate Rollers

The cage plate cam followers are sealed units, and do not require lubrication. However, the cage plate and rotary gear grooves in which the cam followers ride should be lightly greased. When the cage plate is rotated as a unit, the cam followers are exposed, and can be greased. Continue rotating the cage plate assembly until all cam followers, top and bottom, are greased.

2. Idler Shaft Bearings

Apply grease to these bearings through the grease fittings in the ends of the idler shafts, located on the top of the tong to the inside of each rigid sling weldment (3 locations total).
3. Reduction Gear Bearings

Apply grease to these bearings through the grease fittings in the ends of the reduction gear shafts, located on the top of the tong directly under the main hydraulic support, and behind the motor (2 locations total).

4. Tong Door Pivot Shaft

Apply grease to the tong door pivot shaft through the grease fitting in the end of the shaft.
5. Tong Door Latch
 Apply a thin layer of grease to the tong door latch claws, and the top and bottom of the door latch post to enable smooth latch- ing action.

6. Jaw Lubrication
 Apply a thin layer of grease to the metal-to-metal contact surfaces of the tong and backup jaws to enable them to slide smoothly.
7. Backup / Load Cell Lubrication

Grease must be added to both sides of the interface of the load cell and the rear leg of the backup.

E. ADJUSTMENTS

1. Brake Band Adjustment (See Illustration 3.E.1):

The brake bands must be periodically adjusted to continue to provide smooth and efficient jaw cam action. If the cage plate turns with the rotary gear, the jaws will not cam properly and, therefore, will not bite on the tubing or casing. Tightening the brake band against the cage plates will increase frictional resistance, allowing jaws to cam properly and grip the casing. Adjust the brake band using the adjustment nut and bolt set as shown in the illustration below. Do not over tighten, as this causes excessive wear to the brake bands.

If excessive tightening is required for tong operation, remove the brake band and inspect for wear or foreign debris/excessive grease. Cleaning may be required to restore the brake lining. Replace the brake band if the thickness is less than .10” (2.5mm) at any effective portion of the brake lining.
2. **Safety Door Switch Adjustment:**

The safety door switch is intended to interrupt hydraulic power to the motor when the tong door is opened, or even slightly ajar. This is a critical safety system, and proper adjustment is necessary to maintain the intended function. If the rotary gear does not immediately and completely stop rotating when the door is opened, remove the tong from service and perform the following adjustments:

1. Set the tong up in a controlled testing environment without connecting hydraulic power.

2. Open the tong door and check operation of the safety door switch plunger. Depress and allow it spring back several times to ensure smooth operation. If the plunger binds or jams, remove the control cable guide mount at the door end, remove the control cable and plunger, and thoroughly clean and lubricate the plunger and control cable before reinstalling.

3. Test the control cable after cleaning and reinstallation. The cable end should spring back when depressed. If the cable does not smoothly spring back, replace the control cable.

4. Following reinstallation the plunger should extend 3/4 of an inch from the end of the control cable guide mount.

Illustration 3.E.2: Safety Door Plunger Adjustment 01

Adjust plunger position using the positioning nut and locking nut on the control cable before proceeding. Loosen the locking nut, and adjust the positioning nut until the plunger extension measures approximately 3/4". When position of the plunger is set, tighten the locking nut. Note that although the following illustration shows the tong door closed, the plunger extension must be performed with the door open.

Illustration 3.E.3: Safety Door Plunger Adjustment 02
Safety Door Switch Adjustment Cont’d:

5. Connect hydraulic power to the tong.
6. Ensure the door is closed and all personnel are clear. Begin rotating the cage plate. Open the tong door - the cage plate should immediately and completely stop.
7. Release all controls, and close the tong door again. Ensure the cage plate rotates with the door closed.
8. If cage plate continues to rotate with the door open, further adjustment of the safety door switch is necessary. Remove hydraulic power from the tong.
9. Adjust the guide block first. Slightly loosen the two mounting bolts, and use a hammer to lightly tap the guide block toward the front of the tong. Adjust the block approximately 1/8” of an inch, and retighten the mounting bolts.

10. Repeat steps 5 through 8.
11. Make another adjustment of the guide block. Once the adjustment block can no longer be adjusted, further adjustment must be made using the cable positioning nuts (see Step 4).
12. Repeat steps 5 through 11 as many times as necessary to properly adjust the safety door switch. Once the switch has been satisfactorily adjusted the tong may be returned to service.

F. RECOMMENDED PERIODIC CHECKS

1. Backing Pin
 Perform a visual inspection of the backing pin after each job. Replace the pin if stress cracks or excessive wear is found, or if either pin is bent.

2. Torque Gauge
 Periodic calibration of the torque gauge is recommended to assure accurate torque readings. When having the torque gauge serviced and calibrated, it is critical to note the arm length of the tong, as indicated in the “Specifications” section. Farr recommends that the torque gauge assembly be calibrated yearly.

ILLUSTRATION 3.E.4: SAFETY DOOR PLUNGER ADJUSTMENT 03
G. OVERHAUL PROCEDURES
The tong may be overhauled following the disassembly instructions in the following procedure. Access to the gear train is possible by removing the top plate of the tong.

ALL MAINTENANCE AND OVERHAUL SHOULD BE PERFORMED FROM THE TOP. THE BOTTOM PLATE OF THE TONG IS TYPICALLY WELDED TO THE SIDE BODY AND CANNOT BE REMOVED.

REPLACEMENT FASTENERS (BOLTS, NUTS, CAP SCREWS, MACHINE SCREWS, ETC.) USED DURING MAINTENANCE OR OVERHAUL MUST BE GRADE 8 OR EQUIVALENT.

1. Disconnect all hydraulic lines from the hydraulic valve assembly, including main motor lines, backup, safety door, and drains.
2. Remove the four 3/8" hex cap screws securing the valve assembly to the top plate, and lift valve assembly away.
3. If not already done, disconnect and remove load cell and load cell spacer weldment.

REMOVAL OF BACKUP
4. Construct a support that will support the entire weight of the backup assembly.
5. Lift the tong and backup and lower onto structure constructed in step 1 until the weight of the backup is completely removed from the front leg and rear support springs.
6. Free the front leg springs by removing the 3/8" hex cap screw that supports the bottom spring spacers. Remove the cotter pins securing the rear leg support rod, and remove the support rod.
7. Lift the tong, and front and rear legs, up and away from the backup. Use caution not to lose the springs and top spring washers, which will come loose from the front legs when the tong is lifted.

REMOVAL OF LEG ASSEMBLIES
8. Set the tong and leg assembly onto a flat surface. Ensure that the majority of the weight remains supported by the rigid sling and the crane. Remove the two 3/4" x 5" hex bolts, lock washers, and 3/4" nuts securing the rear of the rear leg assembly, and the two 3/4" x 3-1/2" hex bolts and lock washers securing the front of the rear leg assembly.
9. Remove the fasteners securing each front leg mount to the bottom plate.
10. Lift the tong up and away from the legs - ensure that none of the leg assemblies or weldments topple over when the tong is lifted away. Place the tong on a suitable surface that will support the entire weight of the tong and allow access to the bottom of the tong.
11. Remove the two eight 3/8" x 3-1/2" cap screws, lock washers, and nuts securing the rigid sling assembly to the top plate (four per side). The entire rigid sling assembly may now be lifted away from the tong.

REMOVAL OF TOP PLATE
12. If not already done, complete the disconnection of all hydraulic lines from the motor. Remove the four 1/2" cap screws securing the motor to the top plate, and lift the motor and motor gear away.
13. If not already done, remove the two jaw assemblies from the tong.
14. Remove the two external snap rings from the door pivot shaft. Remove the door pivot shaft - if necessary, use a hammer and a soft metal drive to tap the shaft out. Remove the door assembly.
15. Remove the door latch shaft the same way the pivot shaft was removed.
16. Ensure the safety door push-pull cable has been freed at the hydraulic valve end. Remove the fasteners securing the safety door actuator and push-pull assembly to the top plate, and remove the entire actuator assembly.

THE CAGE PLATE BOLTS ARE THE ONLY ITEMS FASTENING THE BOTTOM CAGE PLATE TO THE TONG. SUPPORT THE BOTTOM CAGE PLATE FROM BELOW PRIOR TO REMOVING CAGE PLATE BOLTS IN ORDER TO PREVENT DAMAGE TO THE BOTTOM CAGE PLATE OR PERSONAL INJURY TO THE MECHANIC

17. Remove the four cage plate bolts, washers, and nuts, and the four cage plate spacers. The cage plates may now be removed. There is no need to remove the backing pin assembly from the top cage plate unless maintenance on the backing pin is required.
18. Remove the two 3/8" x 3-1/2" bolts from the center of the tong, just behind the cage plate opening. Note that one of these two bolt sets secures the brake band retainer to the bottom plate.
19. Remove the three 3/8" x 5" hex bolts, 3/8" lock washers, and 3/8" hex nuts that secure the bottom gearbox cover to the top plate.
Overhaul Procedures (continued):

20. Remove the remainder of the 3/8" nuts and bolts from around the perimeter of the tong. Once the bolts are removed the top and bottom plate may be split apart - use caution to pull the top plate straight up from the bottom plate so that there is no binding on the dowel pins used for positioning.

21. For additional access to the gear train, the bottom gearbox cover may be removed by removing the remaining fasteners securing it to the bottom plate.

H. ASSEMBLY PROCEDURES

Assembly of Farr Hydraulic Power Tongs is simple, and can be accomplished without the use of special tools. The instructions on this page are presented as a guide only, and are similar to the assembly sequence our technician would use while assembling the tong in our plant.

Refer to the following torque specs when tightening hex bolts and hex head cap screws.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>CLAMP LOAD (lbs.)</th>
<th>PLAIN (ft-lbs.)</th>
<th>PLATED (ft-lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 - 28 (.250)</td>
<td>3,263</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>5/16- 24 (.3125)</td>
<td>5,113</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>3/8 - 24 (.375)</td>
<td>7,875</td>
<td>49</td>
<td>37</td>
</tr>
<tr>
<td>7/16 - 20 (.4375)</td>
<td>10,650</td>
<td>78</td>
<td>58</td>
</tr>
<tr>
<td>1/2 - 20 (.500)</td>
<td>14,400</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>9/16 - 18 (.5625)</td>
<td>18,300</td>
<td>172</td>
<td>129</td>
</tr>
<tr>
<td>5/8" - 18 (.625)</td>
<td>23,025</td>
<td>240</td>
<td>180</td>
</tr>
<tr>
<td>3/4 - 16 (.750)</td>
<td>33,600</td>
<td>420</td>
<td>315</td>
</tr>
<tr>
<td>7/8" - 14 (.875)</td>
<td>45,825</td>
<td>668</td>
<td>501</td>
</tr>
<tr>
<td>1 - 12 (1.000)</td>
<td>59,700</td>
<td>995</td>
<td>746</td>
</tr>
<tr>
<td>1 - 14 (1.000)</td>
<td>61,125</td>
<td>1019</td>
<td>764</td>
</tr>
<tr>
<td>1 1/8 - 12 (1.125)</td>
<td>77,025</td>
<td>1444</td>
<td>1083</td>
</tr>
<tr>
<td>1 1/4 - 12 (1.125)</td>
<td>96,600</td>
<td>2012</td>
<td>1509</td>
</tr>
<tr>
<td>1 3/8 - 12 (1.375)</td>
<td>118,350</td>
<td>2712</td>
<td>2034</td>
</tr>
<tr>
<td>1 1/2 - 12 (1.500)</td>
<td>142,275</td>
<td>3557</td>
<td>2668</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>CLAMP LOAD (lbs.)</th>
<th>PLAIN (ft-lbs.)</th>
<th>PLATED (ft-lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 - 20 (.250)</td>
<td>2,850</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>5/16- 18 (.3125)</td>
<td>4,725</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>3/8 - 16 (.375)</td>
<td>6,975</td>
<td>44</td>
<td>33</td>
</tr>
<tr>
<td>7/16 - 14 (.4375)</td>
<td>9,600</td>
<td>70</td>
<td>52</td>
</tr>
<tr>
<td>1/2 - 13 (.500)</td>
<td>12,750</td>
<td>106</td>
<td>80</td>
</tr>
<tr>
<td>9/16 - 12 (.5625)</td>
<td>16,350</td>
<td>153</td>
<td>115</td>
</tr>
<tr>
<td>5/8" - 11 (.625)</td>
<td>20,325</td>
<td>212</td>
<td>159</td>
</tr>
<tr>
<td>3/4 - 10 (.750)</td>
<td>30,075</td>
<td>376</td>
<td>282</td>
</tr>
<tr>
<td>7/8" - 9 (.875)</td>
<td>41,550</td>
<td>606</td>
<td>454</td>
</tr>
<tr>
<td>1 - 8 (1.000)</td>
<td>54,525</td>
<td>909</td>
<td>682</td>
</tr>
<tr>
<td>1 1/8 - 7 (1.125)</td>
<td>68,700</td>
<td>1288</td>
<td>966</td>
</tr>
<tr>
<td>1 1/4 - 7 (1.125)</td>
<td>87,225</td>
<td>1817</td>
<td>1363</td>
</tr>
<tr>
<td>1 3/8 - 6 (1.375)</td>
<td>103,950</td>
<td>2382</td>
<td>1787</td>
</tr>
<tr>
<td>1 1/2 - 6 (1.500)</td>
<td>126,450</td>
<td>3161</td>
<td>2371</td>
</tr>
</tbody>
</table>

ALL FASTENERS USED DURING REASSEMBLY OF LOAD-BEARING COMPONENTS (CHAIN SLINGS, RIGID SLINGS, BACKUP LEGS) MUST BE TIGHTENED TO THE CORRECT TORQUE. THREADED FASTENERS USED IN LOAD-BEARING DEVICES MUST BE SECURED WITH RED LOC-TITE™.
NOTE ON INSTALLATION PRACTICES: Ensure all bearings are liberally greased before installing over a shaft or into gears or bearing caps. When inserting a shaft through a support roller assembly ensure shaft is greased. Also ensure all meta-to-metal contact in the gear train is adequately greased.

When graphics are not used in the assembly process, please refer to the relevant exploded diagrams in Section 5.

1. Position the tong body gear case on a suitable stationary support such that the bottom body plate is accessible.
2. Assemble seven inner ring / needle bearing assemblies - press seven inner rings into seven needle bearings.
3. Press one of the bearing assemblies assembled in step 2 into large reduction gear (PN 101-3292) followed by a bearing spacer (PN 101-3812) and a second bearing assembly.
4. Orient the gear assembly from step 3 so that the smaller gear is facing up. Slide gear shaft (PN 101-3296) into the gear assembly, making sure the threaded hole in the top of the shaft is facing up, centering in the gear assembly as best as able.
5. Place a thrust washer (PN 02-E0001) over each end of the gear shaft, and then place the bottom (non-threaded) end of the gear shaft into the gear box cover (PN 101-3317).
6. Place three 3/8" x 3/4" dowel pins in to their respective locations in the side wall of the gearbox cover, and fasten the gearbox cover to the bottom of the bottom plate with four 3/8" NC x 2-1/2" hex cap screws and 3/8" lock washers.

Illustration 3.H.1: Gearbox Cover Installation

7. Press one of the bearing assemblies assembled in step 2 into the smaller reduction gear (PN 101-3291) followed by a bearing spacer (PN 101-3812) and a second bearing assembly.
8. Orient the gear assembly from step 7 so that the smaller gear is facing down. Slide gear shaft (PN 101-3296) into the gear assembly, making sure the threaded hole in the top of the shaft is facing up, centering in the gear assembly as best as able.
9. Place a thrust washer (PN 02-E0001) over each end of the gear shaft, and then place the bottom (non-threaded) end of the gear shaft into the gear box cover (PN 101-3317).
10. Press one bearing assembly assembled in Step 2 into each of the three idler gears (PN 101-3293). Slide an idler gear shaft (PN 101-3297) through each idler gear assembly and center in the gear assemblies as well as able. Slide a thrust washer (PN 02-E0001) over each end, and place the bottom (un-threaded) ends of the shafts through the bottom plate (see Illustration 3.H.2).
Mechanical Assembly Procedures (continued):

11. Assemble rotary gear assembly gear as shown in Illustration 3.H.3. Refer to assembly drawing on page 5.12 for further information.
Mechanical Assembly Procedures (continued):

12. Install eight “button” guides (PN 101-3389) into the bottom plate using one 1/4” NC x 1/2” hex socket flat head machine screw per button. Install the remaining eight “button” guides on the underside of the top plate.

13. Install rotary gear assembly over the “button” guides in the lower plate. Ensure the rotary gear is installed with the backing pin slots facing up.

14. Insert three 3/8” x 1” dowel pins into their respective locations in the lower body plate.

15. Lower the top plate into position over the bottom plate. Ensure the plate is lowered as horizontally as possible to prevent binding on the dowel pins.

16. Secure the top plate to the bottom plate and gear box with 3/8” NC x 3” hex cap screws (indicated by green) and 3/8” NC x 5” hex cap screws (indicated by red), and 3/8” NC hex nuts and 3/8” lock washers.

17. Position the lower cage plate (PN 101-3304) against the bottom side of the rotary gear assembly, ensuring the groove in the cage plate engages with the lower rollers. Place four cage plate spacers (PN 101-3333) on the inside of the bottom cage plate.
Mechanical Assembly Procedures (continued):

18. Place the top cage plate (PN 101-3303) over the top of the rotary gear assembly, ensuring the groove in the cage plate engages the rollers on the top of the rotary gear. Secure the top and bottom cage plates with four 3/8" NC x 4-1/2" hex cap screws, lock washers, and hex bolts.

19. Attach the motor gear to the motor shaft. Orient the motor gear so that the smaller diameter of the gear is toward the motor rather than the end of the motor shaft. The gear should be positioned 7/16" from the flat end of the motor shaft - secure with two 1/4" NC x 3/8" cone point hex socket head set screws.

20. Slide the motor thrust washer (PN 02-E0009) over the end of the motor shaft. Mount the motor to the top plate - the end of the motor shaft should rest within the circular cutout in the bottom plate. Secure the motor to the top plate with four 1/2" NC x 1-1/2" hex cap screws and 1/2" lock washers.

21. Insert the door latch pin (PN 101-3306) into its location and secure on the insides of the top and bottom plate with two external snap rings (PN 02-E0004).

22. Attach the door latch weldment to the door weldment (see Illustration 3.H.6):

 i. Insert a positioning 1/4" x 3/4" dowel pin into the front of the door weldment

 ii. Slide the latch spring (C0460-0050-1125) over the pin welded to the front of the bottom door plate in the door weldment.

 iii. Attach the latch weldment (PN 101-3530) to the door weldment with a 3/8" x 3/4" hex socket shoulder bolt. Ensure a wave spring (PN 02-9267) is inserted between the latch weldment and the door weldment when the latch weldment is being attached.

23. Insert a shoulder bushing (PN 02-E0003) into the top of the top plate, and the bottom of the bottom plate, where the door pin is located.

Illustration 3.H.6: Door Latch Weldment Installation
Mechanical Assembly Procedures (continued):

24. Thread the door detent into the bottom of the top plate until the spring-loaded button protrudes through the top plate. Secure the detent from the bottom with a 3/8” NC hex nut.

25. Position the door & latch assembly assembled in Step 22 in its location, and insert the door pin from the top through the door, the shoulder bushings, and the top and bottom plate. Secure the door pin with two 3/4” external snap rings (PN 02-E0004) to the insides of the shoulder bushings.

26. Attach the safety door cable guide holder (PN 101-4235) and cover (PN 101-4237) to the top plate with one 3/8” NC x 1-3/4” hex cap screw and 3/8” lock washer, and one 3/8” NC x 4-1/2” hex cap screw and lock washer. Note that the second fastener extends through the top and bottom plates and is secured on the bottom with a 3/8” lock washer and 3/8” NC hex nut.

27. Connect the two brake band weldments together, using a 3/8” NC x 3-1/4” hex cap screw, 3/8” lock washer, and 3/8” NC hex nut. Ensure that a Belleville 8-washer assembly (PN 101-3272ASSEM) is placed between the head of the cap screw and the brake band weldment.

28. Secure the brake band assembly to the bottom plate using two 3/8” x 16/25” shoulder bolts at the brake band pivots, and the brake band retainer (101-3975). Secure the brake band retainer to the bottom plate using a 3/8” NC x 3-1/2” hex cap screw, inserted from the top plate, a 3/8” lock washer, and a 3/8” NC hex nut.

29. Secure four rigid sling lifting lugs to the top plate using two 3/8” NC x 3-1/2” hex cap screws, two 3/8” lock washers, and two 3/8” NC hex nuts per lug (secure bolts from underneath the tong).

30. Slide the backing pin retainer (PN 101-4040) over the backing pin center pivot spacer (PN 101-4038), and secure the pivot spacer to the top cage plate using a 3/8” NC x 2-1/2” hex cap screw and 3/8” flat washer.

31. Thread 3/8” NC x 1-1/2” threaded stud (PN 101-4058) into the backing pin (PN 101-4039). Attach the backing pin to the backing pin retainer using the backing pin knob (PN 02-0017).

32. Attach the rigid sling weldment to the rigid sling brackets using one rigid sling pin (PN 02-E0008) per side. Secure each rigid sling pin with a 0.125” x 2.5” hitch pins. Ensure a 3/4” flat washer is installed between the rigid sling weldment and each rigid sling lug (total of four).

33. Set the rear leg weldment (PN 101-3883) on a flat concrete surface, in a clear area as close to the tong assembly as possible. Lift the tong with a crane, and lower it on to the rear leg weldment, ensuring most of the weight remains supported by the crane. Secure the rear leg weldment to the tong using two 3/4” NC x 5” hex bolts, 3/4” lock washers, and two 3/4” hex nuts through the two mounting holes in the rear, one 3/4” NC x 3-1/2” hex bolt and 3/4” lock washer, and one 3/4” NC x 2-1/2” hex bolt and 3/4” lock washer.
Mechanical Assembly Procedures (continued):

34. Attach the front leg weldments to the tong using two 3/8" NC x 3-1/2" hex cap screws, 3/8" lock washers, and 3/8" NC hex nuts per side.

35. Support the backup on a structure that will support its complete weight, at least 16 inches (40 cm) off the floor.

36. Set the tong and leg assembly down over the backup, guiding the front legs through the front leg holes on the backup and guiding the rear “paddle” on the backup between the uprights in the rear leg weldment. Before the front legs reach the floor, slide a large, 1-5/8" washer over the bottom of each leg followed by a front leg spring (PN 02-0920) and a bottom spring support (PN 101-4339). Secure the leg springs with a 3/8" NC x 2" hex cap screw and 3/8" NC hex nut.

37. Insert two backup support plate weldments (PN 101-3865) between the uprights in the rear leg weldment so that they oppose each other (see exploded diagram Pp. 6.28 - 6.29). Insert two rear leg springs (PN 997-13) between the two support plates, and insert the rear leg support rod (PN 101-3891) beneath the two plates. Secure the rod with two small hitch pins.

38. Lift the tong and backup assembly away from any supporting structures and place flat on a sturdy surface.

39. Pre-mount the main valve bank to the valve mount weldment (PN 101-4101) using three 1/2" NC x 4-1/2" hex bolts, 1/2" narrow flat washers, and 1/2" NC thin nylock nuts.

40. Install the valve mount weldment on the top plate to the left of the motor. Secure with four 3/8" NC x 1" hex bolts and 3/8" lock washers.

41. Install grease fittings as follows:
 i. Install two 1/4" UNF straight thread grease fittings (PN 02-0097) into the top cage plate.
 ii. Install a 1/4" UNF straight thread grease fitting (PN 02-0097) in the top end of each gear shaft, located on the top side of the tong (5 locations total).
 iii. Install a 1/4" UNF straight thread grease fitting (PN 02-0097) in the end of the door pivot shaft.
I. DAILY INSPECTION & MAINTENANCE CHECKLIST (POWER TONG)

Farr recommends that the following inspection and maintenance procedures be performed before each use, and at least once per day when the tong is in steady use, in the order in which they are listed.

1. Rotate cage plate/rotary gear until the opening in the rotary gear faces towards the rear of the tong.

2. DO NOT PERFORM ANY FURTHER ACTIONS OR MAINTENANCE WHILE THE TONG IS CONNECTED TO ANY HYDRAULIC POWER SUPPLY. FARR RECOMMENDS THAT ALL HYDRAULIC LINES ARE FULLY DISCONNECTED, AND RESIDUAL HYDRAULIC PRESSURE IS BLED OFF. ENSURE ADEQUATE CONTAINMENT IS IN PLACE TO PREVENT ENVIRONMENTAL CONTAMINATION FROM RESIDUAL HYDRAULIC FLUID.

 Depression Hydraulic System In Preparation For Maintenance:

1) Rotate the tong to the "open throat" position. Ensure tong and backup doors (if equipped) are closed. Fully extend the lift cylinder
2) De-energize the power unit.
3) Repeatedly actuate the tong motor control valve lever IN BOTH DIRECTIONS to dissipate any residual pressure in the valve and motor.
4) Remove the hydraulic SUPPLY line from the equipment.
5) Repeatedly actuate the remaining control valve levers IN BOTH DIRECTIONS to dissipate any residual pressure in the remainder of the hydraulic control system.
6) Disconnect the hydraulic RETURN line from the equipment.
7) Disconnect remaining hoses such as case drains, or lines connected to the turns counter.

 HYDRAULIC PRESSURES AS HIGH AS OPERATING PRESSURE MAY REMAIN TRAPPED IN SMALL AREAS OF THE EQUIPMENT. ENSURE ALL MAINTENANCE IS CARRIED OUT BY A QUALIFIED SERVICE TECHNICIAN, AND THAT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT IS USED TO GUARD AGAINST PRESSURE INJURIES

3. Perform an initial wash of the tong in order to remove the majority of dirt and grease build-up. Ensure adequate containment is in place to prevent environmental contamination from residual hydraulic fluid and dirty grease.
4. Remove the access panel on the side of the tong directly adjacent to the shifter mechanism.
5. Use a flashlight to perform a visual inspection of the gear train through the access panel and the opening of the rotary gear. If gear damage or chips of metal are seen, the tong should be removed from service and overhauled to avoid further damage. Replace access panel when inspection is complete.
6. Perform a visual inspection of all fasteners and protruding body pieces (example: hydraulic valve mounts, inlet & outlet line supports, tong legs, shifter handle pivot lugs). Tighten or replace loose or missing fasteners. Farr recommends that damaged or missing body parts be repaired or replaced as soon as possible.
7. Inspect the jaws and dies. Inspect the jaw roller pins for signs of damage - replace pins if necessary. If the pins are welded in place, replace the entire jaw assembly. Ensure dies are secure in the jaw - replace worn dies if necessary.
8. Ensure that the jaw rollers rotate freely. Check to ensure the size of the loaded jaws match the size of casing or pipe you are running.
9. Perform a visual inspection of all lifting points - if visible damage is seen, including cracks, broken lugs, distorted metal, etc. replace damaged part(s) before placing tong in service. Also inspect all chains, master links, and turnbuckles - again, if any damage is noted replace the damaged part(s) before placing the tong in service.
10. Inspect tong for signs of premature wear, or moving parts that are rubbing (bare metal where there used to be paint is a good indication of wear.
11. Inspect backing pin(s). If cracked, broken, or bent it (they) must be replaced.
12. Inspect top and bottom brake band linings - replace if necessary. Unequal wear of the brake bands indicates that the brake band tension is not evenly adjusted. Refer to the maintenance section of the manual for instructions on properly adjusting brake bands.
13. Perform a visual inspection of all hydraulic lines. Replace flexible lines if they appear to be cracked, fatigued, or have visible signs of wear from contact with a rigid object.
14. Perform a visual inspection of all hydraulic lines. Replace flexible lines if they appear to be cracked, fatigued, or have visible signs of wear from contact with a rigid object.
14. Perform a complete greasing of the tong - refer to Maintenance section of the technical manual.

15. Ensure main supply and return connections to the tong are fully made up. Re-connect the remainder of the hydraulic lines, and, if applicable, the electrical line to the turns counter.

FAILURE TO ENSURE THAT THE SELF-SEALING SUPPLY AND RETURN LINES ARE FULLY MADE UP MAY RESULT IN CATASTROPHIC EQUIPMENT FAILURE.

If using a stand-alone power unit, start it now - refer to the power unit technical manual for startup procedures. Listen to power unit for a moment to see if there are any unusual mechanical sounds (rubbing, grinding, excessive pump noise). If using a diesel unit, allow sufficient time for the engine to reach operating temperature before increasing engine RPM. Once engine is warm, gradually increase engine RPM until operating speed is reached.

16. Ensure that supply pressure is at or above the tong's specified operating pressure, and that the return pressure is less than 350 psi.

17. Perform a visual inspection of pressurized hydraulic lines. Document and correct any hydraulic fluid leaks.

18. Perform a full functional test of the tong. Report and correct any hydraulic leaks from the hydraulic valve bank, or from any hydraulic cylinders that are used.

19. Perform a visual inspection of the load cell. If using a tension load cell, replace any cracked, broken, or distorted components including links and chains. If using a compression load cell, replace any component that has been crushed or otherwise distorted through compression.

20. If applicable, inspect the load cell anchor pins (tension load cell only). Replace the anchor pins if cracking or metal distortion is seen.

21. If applicable, the weld securing the single load cell anchor to the bridge bar main plate must be inspected (compression load cell only). If the integrity of the weld has been compromised, the tong must be removed from service until the weld is repaired. The load cell beam will need to be disconnected and removed so the weld is visible. Before re-installing the beam, liberally grease the anchor pin before reinserting into the load cell beam.

22. Test safety door feature (if equipped). Open the tong door(s), and attempt to rotate the cage plate at low speed (low gear) in both directions (makeup and breakout). If cage plate begins rotating, the safety door mechanism is not functional, and the tong must be removed from service until the safety door mechanism can be repaired. If the safety door is operating correctly, cage plate rotation will not be inhibited once the door is closed and latched.

NEVER OPERATE YOUR EQUIPMENT WITH A BYPASSED OR MALFUNCTIONING SAFETY DOOR

23. While rotating the cage plate, ensure that the jaws properly cam. If the jaws do not cam properly, the brake bands need to be tightened. Incrementally adjust both the top and bottom brake bands EQUALLY until proper cam action is achieved.
J. MONTHLY MAINTENANCE CHECKLIST - POWER TONG

The following maintenance checklist is intended as a guideline rather than a definitive maintenance schedule. Your equipment may require more, or less, maintenance depending upon the frequency of use, the percentage of maximum torque that your equipment is routinely subjected to, and the field conditions under which your equipment operates. Farr recommends that the following inspection and maintenance procedures be performed monthly, or in conjunction with your maintenance foreman's experience and best estimate of when your equipment is due for this maintenance.

1. Rotate cage plate/rotary gear until the opening in the rotary gear faces towards the rear of the tong.

DO NOT PERFORM ANY FURTHER ACTIONS OR MAINTENANCE WHILE THE TONG IS CONNECTED TO ANY HYDRAULIC POWER SUPPLY. FARR RECOMMENDS THAT ALL HYDRAULIC LINES ARE FULLY DISCONNECTED, AND RESIDUAL HYDRAULIC PRESSURE IS BLED OFF. ENSURE ADEQUATE CONTAINMENT IS IN PLACE TO PREVENT ENVIRONMENTAL CONTAMINATION FROM RESIDUAL HYDRAULIC FLUID.

DEPRESSURIZE HYDRAULIC SYSTEM IN PREPARATION FOR MAINTENANCE:

1) Rotate the tong to the “open throat” position. Ensure tong and backup doors (if equipped) are closed. Fully extend the lift cylinder
2) De-energize the power unit.
3) Repeatedly actuate the tong motor control valve lever IN BOTH DIRECTIONS to dissipate any residual pressure in the valve and motor.
4) Remove the hydraulic SUPPLY line from the equipment.
5) Repeatedly actuate the remaining control valve levers IN BOTH DIRECTIONS to dissipate any residual pressure in the remainder of the hydraulic control system.
6) Disconnect the hydraulic RETURN line from the equipment.
7) Disconnect remaining hoses such as case drains, or lines connected to the turns counter.

HYDRAULIC PRESSURES AS HIGH AS OPERATING PRESSURE MAY REMAIN TRAPPED IN SMALL AREAS OF THE EQUIPMENT. ENSURE ALL MAINTENANCE IS CARRIED OUT BY A QUALIFIED SERVICE TECHNICIAN, AND THAT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT IS USED TO GUARD AGAINST PRESSURE INJURIES

3. Clean the exterior of the tool thoroughly, using either water (if using a pressure washer ensure a low-pressure wash wand is used), or an appropriate solvent-based grease-cutting cleaner such as Varsol. Ensure adequate containment is in place to prevent environmental contamination from residual hydraulic fluid, dirty grease, and cleaning agents.
4. Remove the access panel on the side of the tong directly adjacent to the shifter mechanism.
5. Clean the interior of the tong thoroughly, using either water (do not use a pressure washer), or an appropriate solvent-based grease-cutting cleaner such as Varsol. Ensure adequate containment is in place to prevent environmental contamination from residual hydraulic fluid, dirty grease, and cleaning agents. Make a note if any metal shavings or metal pieces are flushed out of the gear train cavity - if shavings or metal pieces are seen the tong must be overhauled before it is returned to service.
6. Inspect all fasteners and fastener safety wires (if equipped). Replace any missing fasteners - use Grade 8 bolts only unless otherwise specified. Re-torque all external fasteners to SAE specifications.
7. Repair or replace any damaged or missing external body parts, such as torque gauge mounts, hydraulic supports, safety door protectors, etc.
8. Perform a visual inspection of all fasteners and protruding body pieces (example: hydraulic valve mounts, inlet & outlet line supports, tong legs, shifter handle pivot lugs). Tighten or replace loose or missing fasteners. Farr recommends that damaged or missing body parts be repaired or replaced as soon as possible.
9. Inspect tong for signs of premature wear, or moving parts that are rubbing (bare metal where there used to be paint) is a good indication of wear.
10. Inspect all paint - locations in which the paint has been damaged must be repaired prior to the tong being returned to service. Prepare areas to be painted to ensure they are free of grease, dirt, or solvent. Touch up using a solvent-based acrylic paint - “McCoy Grey” is paint color number RAL7015 (contact Farr sales for paint number for custom paint applications). Allow sufficient time for paint to dry before proceeding.
11. Inspect all external welds. Any weld that is cracked or separating must be repaired and repainted before returning the tong to service.
12. Perform a visual inspection of all lifting points - if visible damage is seen, including cracks, broken lugs, distorted metal, etc. replace damaged part(s) before placing tong in service. Also inspect all chains, master links, and turnbuckles - again, if any damage is noted replace the damaged part(s) before placing the tong in service. Refer to Section 2A of the technical manual (Sling/Load Bearing Device Safety) for information on recommended testing and recertification. Please note that turnbuckles with part number 101-3086 (short turnbuckles) use a high-strength pin which must be supplied by Farr.

13. "SHORT" TURNBUCKLES HAVING PART NUMBER 101-3086 EMPLOY HIGH-STRENGTH PINS WHICH MUST BE SUPPLIED BY FARR.

- Rotate the gear train by hand, and use a flashlight to perform a visual inspection of the gear train through the access panel and the opening of the rotary gear while the gear train is being rotated. If gear damage or chips of metal are seen, the tong should be removed from service and overhauled to avoid further damage. Replace access panel when inspection is complete.

- Inspect all jaws and dies in use for the maintenance interval. Inspect the jaw roller pins for signs of damage - replace pins if necessary. If the pins are welded in place, remove and quarantine the jaw until the weld is repaired. Ensure dies are secure in the jaw - replace worn dies if necessary. Ensure that the jaw rollers rotate freely.

- Inspect backing pin(s). If cracked, broken, or bent it (they) must be replaced.

- Inspect top and bottom brake band linings - replace if necessary. Unequal wear of the brake bands indicates that the brake band tension is not evenly adjusted. Refer to the maintenance section of the manual for instructions on properly adjusting brake bands.

- Inspect door springs. Ensure the springs retain sufficient strength to be able to assist the opening of the door, and to keep the door open. The springs should also help to “snap” the door shut.

- Inspect backup springs (if applicable). The rear extension springs should be equally extended, and the front leg springs should be equally compressed. Ensure that neither of the rear backup springs have been over-extended and lack sufficient tension to adequately support the backup. Ensure that neither of the front leg springs have been over-compressed, and still retain enough spring strength to support the front of the backup.

- Extend all hydraulic cylinders, and inspect cylinder rods for signs of mechanical damage, flaking, or rust. Farr recommends that damaged cylinders be replaced prior to storage.

- Perform a visual inspection of all hydraulic lines. Replace flexible lines if they appear to be cracked, fatigued, or have visible signs of wear from contact with a rigid object. If your tong is equipped with rigid hydraulic lines, replace any line that is dented or appears to be stressed or cracked.

- Generously fill the gear train housing with grease through the access panel, and also through the opening in the rotary gear. Perform a full lubrication - refer to Maintenance section of manual to determine lubrication points.

- Ensure main supply and return connections to the tong are fully made up. Re-connect the remainder of the hydraulic lines, and, if applicable, the electrical line to the turns counter.

14. FAILURE TO ENSURE THAT THE SELF-SEALING SUPPLY AND RETURN LINES ARE FULLY MADE UP MAY RESULT IN CATASTROPHIC EQUIPMENT FAILURE.

If using a stand-alone power unit, start it now - refer to the power unit technical manual for startup procedures. Listen to power unit for a moment to see if there are any unusual mechanical sounds (rubbing, grinding, excessive pump noise). If using a diesel unit, allow sufficient time for the engine to reach operating temperature before increasing engine RPM. Once engine is warm, gradually increase engine RPM until operating speed is reached.

15. Ensure that supply pressure is at or above the tong’s specified operating pressure, and that the return pressure is less than 350 psi.

16. Perform a visual inspection of pressurized hydraulic lines. If any hydraulic fittings or hoses are leaking they must be repaired or replaced before proceeding.

17. Rotate tong for one minute, stop, and reverse the direction of rotation for another minute, ending with the opening of the rotary gear facing the gear train. De-energize the power unit, and perform another generous lubrication of the gear train, including the gear housing.

18. Energize power unit. Rotate tong for one minute, stop, and reverse the direction of rotation for another minute, ending with the opening of the rotary gear facing the gear train.

19. De-energize the power unit, and perform a third generous lubrication of the gear train, including the gear housing.
Re-energize power unit and extend all hydraulic cylinders. Inspect cylinder rods for signs of mechanical damage, flaking, or rust. Farr recommends that damaged cylinders be replaced.

Rotate tong in low gear for 5 minutes while monitoring pressurized seals and hydraulic lines. If a seal, line, or fitting begins to leak while tong is rotating, it must be replaced before the equipment is returned to service.

Rotate tong in high gear for 5 minutes while monitoring temperature of top and bottom bearing caps. If the bearing caps are hot to the touch (higher than approximately 50°C) replace the applicable bearings. Likewise if the tong is making unusual noises check for damaged bearings (see Maintenance Manual for all bearing locations).

Install load cell. If using a tension load cell, perform a visual inspection and replace any cracked, broken, or distorted components including links and chains. If using a compression load cell, replace any component that has been crushed or otherwise distorted through compression.

If applicable, inspect the load cell anchor pins (tension load cell only). Replace the anchor pins if cracking or metal distortion is seen.

If applicable, the weld securing the single load cell anchor to the bridge bar main plate must be inspected (compression load cell only). If the integrity of the weld has been compromised, the tong must be removed from service until the weld is repaired. The load cell beam will need to be disconnected and removed so the weld is visible. Before re-installing the beam, liberally grease the anchor pin before reinserting into the load cell beam.

Inspect load cell for damage or signs of stress. Check oil level in load cell and fill if necessary (refer to technical manual Section 7 or Section 8).

While rotating the cage plate, ensure that the jaws properly cam. If the jaws do not cam properly, the brake bands need to be tightened. Incrementally adjust both the top and bottom brake bands EQUALLY until proper cam action is achieved. Refer to the maintenance section of the manual for instructions on properly adjusting brake bands.

Perform a full functional test of the tong including, if applicable, backup components, lift cylinder, and float frame components. Report and correct any hydraulic leaks from the hydraulic valve bank, or from any hydraulic cylinders that are used.

Test safety door feature (if equipped). Begin rotating the tong at low speed, and open the tong door(s). If rotation does not immediately stop, this is an indication that the safety door mechanism is not operating correctly and the tong must be removed from service until the mechanism is repaired. Repeat the test while operating the tong in the opposite direction. If the safety door is operating correctly, cage plate rotation will not be inhibited once the door is closed and latched.

NEVER OPERATE YOUR EQUIPMENT WITH A BYPASSED OR MALFUNCTIONING SAFETY DOOR

Farr recommends that an anti-corrosive agent such as Tectyl® 506 be applied to all external unpainted surfaces (and chain slings) EXCEPT cylinder rods, jaw rollers, and rotary gear camming surfaces. Refer to manufacturer data sheets for proper application and safety information.

Once all of the above maintenance checklist items have been satisfactorily completed the tool may be returned to service.
K. DAILY INSPECTION & MAINTENANCE CHECKLIST (BACKUPS)

Farr Canada recommends that the following inspection and maintenance procedures be performed before each use, and at least once per day when the backup is in steady use, in the order in which they are listed.

Do not perform any maintenance while the tong and backup assembly is connected to any hydraulic power supply. Farr Canada recommends that all hydraulic lines are fully disconnected, and residual hydraulic pressure is bled off. Ensure adequate containment is in place to prevent environmental contamination from residual hydraulic fluid.

ALL UNITS

1. Perform an initial wash of the backup in order to remove the majority of dirt and grease build-up.

2. Perform an external inspection. Check to ensure there are no loose or missing fasteners - replace if necessary.

3. Check to see if backup is parallel to the tong - if the backup is resting at an angle, one of the front leg springs is likely broken or fatigued to the point it must be replaced.

WEDGE BACKUP ONLY

4. Remove access cover from top plate. Perform a visual inspection of the interior of the backup - use a flashlight if necessary. Premature wear where there are moving parts (bare metal where there used to be paint, and metal shavings in the grease are good indicators) may show where a component needs to be adjusted, or if necessary, replaced. Replace any removed panels when inspection is complete.

5. Inspect latch mechanism to ensure the door latch plate completely engages the door. Adjust or replace if necessary.

6. Grease UC-300 slider pads, ram guides, door cylinder pivots, and door pivots.

CLINCHER BACKUP ONLY

Use a flashlight to perform a visual inspection of the interior of the backup - remove one side panel if necessary. Premature wear where there are moving parts (bare metal where there used to be paint, and metal shavings in the grease are good indicators) may show where a component needs to be adjusted, or if necessary replaced. Replace any removed panels when inspection is complete.

5. Grease clincher cylinder guides using the grease fittings on the top body plate.

6. Ensure the splines on the clincher cylinder faces, and on the rear of the die are clean and free of debris before inserting clincher die. If die are already installed, ensure fasteners in the die retainers are tightly secured.

7. Inspect rear spring hanger assembly. Ensure all eye bolts, shackles, and cotter pins are in place and in good condition.

8. Inspect clincher cylinders for hydraulic fluid leaks once the system pressure has been restored.

FARR-STYLE BACKUP ONLY

4. Inspect cam ring gear for broken teeth.

5. Lubricate the cam follower array.

Inspect the jaws and dies. Inspect the jaw roller pins for signs of damage - replace pins if necessary. If the pins are welded in place, replace the entire jaw assembly. Ensure dies are secure in the jaw - replace worn dies if necessary.

6. Ensure that the jaw rollers rotate freely. Check to ensure the size of the loaded jaws match the size of casing or pipe you are running.

7. Inspect front and rear cam cylinder supports. Repair or replace any parts that are broken, cracked, or bent.

8. Inspect rear spring hanger assembly. Ensure all eye bolts, shackles, and cotter pins are in place and in good condition.

9. Open the backup door and inspect the condition of the latch. Repair or replace damaged latch components. If latch appears to be in good condition, close the door, then tug firmly on it to ensure the door remains latched.

ALL UNITS (AFTER STARTING POWER UNIT)

10. Perform a visual inspection of pressurized hydraulic lines - document and correct any hydraulic fluid leaks.

11. Perform a full functional test of the backup. Document and correct hydraulic leaks from the hydraulic valve bank, or from any hydraulic cylinders that are in use on the backup.
L. DAILY INSPECTION & MAINTENANCE CHECKLIST (POWER UNIT)

Farr recommends that the following inspections and maintenance procedures be performed before each use, and at least once per day when the equipment is in steady use, in the sequence in which they are listed. Rigorous inspection and maintenance, especially lubrication, is essential in order to ensure that your equipment always meets specifications, and to prevent catastrophic failures that can severely damage your equipment and cause worker injury.

If using a stand-alone power unit, perform the following inspection and maintenance procedures before each use, and at least once per day when the power unit is in steady use:

Do not perform any maintenance while the power unit is energized (electric) or if the engine is running (diesel). Ensure the electrical supply is locked out, or, if using a diesel power supply, ensure that the engine is locked out or the starting mechanism otherwise disabled.

Diesel Only

1. ☐ Check engine oil levels - add if necessary.
2. ☐ Check diesel fuel tank - fill if necessary.
3. ☐ Visually inspect all fan belts.
4. ☐ Activate mechanical shut-off device - ensure that shut-off switch on engine is engaging when manual shut-off switch is actuated.

Electric Only

1. ☐ Visually inspect all electrical lines and visible connections. If your unit is NOT explosion proof, open the electrical enclosure and VISUALLY inspect contacts and connections for signs of corrosion or arcing. Do not open explosion-proof enclosures.

NEVER PLACE HANDS INSIDE AN ELECTRICAL ENCLOSURE UNLESS YOU HAVE CONFIRMED THAT THE POWER HAS BEEN DISCONNECTED AND LOCKED OUT

2. ☐ Visually inspect main electrical line between main power source and power unit.

All Units

5. ☐ Perform a visual inspection of all parts. Check to ensure there are no loose or missing fasteners.
6. ☐ Check hydraulic fluid level - ensure cold level is approximately half-way up the sight glass on the hydraulic fluid reservoir.
7. ☐ Perform a visual inspection to ensure there are no hydraulic fluid leaks - correct if necessary.
8. ☐ Check that the main supply and return lines on the hydraulic fluid reservoir are both fully open.
9. ☐ Apply grease to any grease fittings that your power unit may have. Apply grease to each fitting until grease is visibly displaced from bearing, or as recommended by your power unit manual.
10. ☐ Ensure supply and return connections at the power unit and at the equipment in use are fully made up.

FAILURE TO ENSURE THAT THE SELF-SEALING SUPPLY AND RETURN LINES ARE FULLY MADE UP MAY RESULT IN CATASTROPHIC EQUIPMENT FAILURE.

11. ☐ Check hydraulic fluid filter back pressure (must be done while fluid is circulating). If needle on indicator gauge is in the red zone, the filter should be changed the next time the unit is shut down.
M. TUBULAR CONNECTION EQUIPMENT DE-COMMISSIONING PROCEDURE

Perform the following decommissioning procedures when removing tubular connection equipment from service, with the intent of short to long-term storage. These procedures are essential for ensuring proper protection of the equipment from environmental attack, and to aid in the quick turnaround when returning the equipment to service.

Store all o-rings, seals, packings, gaskets, etc. in strong moisture proof, airtight containers. Ensure that these items are not crushed, nicked, or otherwise damaged.

Do not perform any further actions or maintenance while the tong is connected to any hydraulic power supply. Farr recommends that all hydraulic lines are fully disconnected, and residual hydraulic pressure is bled off. Ensure adequate containment is in place to prevent environmental contamination from residual hydraulic fluid.

DEPRESSURIZATION PROCEDURE IN PREPARATION FOR STORAGE:

1) Rotate the tong so that the opening in the rotary gear faces the gear train (towards the rear of the tong). Ensure tong and backup doors (if equipped) are closed. Fully extend the lift cylinder (if equipped). If mounted in a frame, retract the float cylinders (if equipped).

2) De-energize the power unit.

3) Repeatedly actuate the tong motor control valve lever IN BOTH DIRECTIONS to dissipate any residual pressure in the valve and motor.

4) Remove the hydraulic SUPPLY line from the equipment.

5) Repeatedly actuate the remaining control valve levers IN BOTH DIRECTIONS to dissipate any residual pressure in the remainder of the hydraulic control system.

6) Disconnect the hydraulic RETURN line from the equipment.

7) Disconnect remaining hoses such as case drains, or lines connected to the turns counter.

HYDRAULIC PRESSURES AS HIGH AS OPERATING PRESSURE MAY REMAIN TRAPPED IN SMALL AREAS OF THE EQUIPMENT. ENSURE ALL MAINTENANCE IS CARRIED OUT BY A QUALIFIED SERVICE TECHNICIAN, AND THAT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT IS USED TO GUARD AGAINST PRESSURE-INDUCED INJURIES

1. Perform an initial wash of the tool in order to remove the majority of dirt and grease build-up. Ensure adequate containment is in place to prevent environmental contamination from residual hydraulic fluid and dirty grease.

2. Remove the access panel on the side of the tong directly adjacent to the shifter mechanism.

3. Clean the interior of the tong thoroughly, using either water (do not use a pressure washer), or an appropriate solvent-based grease-cutting cleaner such as Varsol. Ensure adequate containment is in place to prevent environmental contamination from residual hydraulic fluid, dirty grease, and cleaning agents. Make a note if any metal shavings or metal pieces are flushed out of the gear train cavity - if shavings or metal pieces are seen the tong must be overhauled before it is returned to service.

4. Clean the exterior of the tool thoroughly, using either water (do not use a pressure washer), or an appropriate solvent-based grease-cutting cleaner such as Varsol. Ensure adequate containment is in place to prevent environmental contamination from residual hydraulic fluid, dirty grease, and cleaning agents.

5. Inspect all fasteners and fastener safety wires. Replace any missing fasteners - use Grade 8 bolts only. Re-torque all external fasteners to SAE specifications.

6. Inspect backing pin(s). If cracked, broken, or bent (they) must be replaced.

7. Repair or replace any damaged or missing external body parts, such as torque gauge mounts, hydraulic supports, safety door protectors, etc.

8. Inspect all paint - locations in which the paint has been damaged must be repaired prior to storage. Prepare areas to be painted to ensure they are free of grease, dirt, or solvent. Touch up using a solvent-based acrylic paint - "McCoy Grey" is paint number RAL7015. Allow sufficient time for paint to dry before proceeding.

9. Perform a liberal lubrication of the equipment - refer to Maintenance section of manual to determine lubrication points. Generously fill the gear train housing with grease through the access panel, and also through the opening in the rotary gear.

10. Connect the equipment to a hydraulic power unit. Ensure all lines are fully made up to prevent equipment damage from excessive back pressure. Do not neglect to connect the motor drain.

11. Energize power unit.

12. Rotate tong for one minute, stop, and reverse the direction of rotation for another minute, ending with the opening of the rotary gear facing the gear train. De-energize the power unit, and perform another generous lubrication of the gear train, including the gear housing.

13. Energize power unit. Rotate tong for one minute, stop, and reverse the direction of rotation for another minute, ending with the opening of the rotary gear facing the gear train.
14. De-energize the power unit, and perform a third generous lubrication of the gear train, including the gear housing.

15. Energize power unit, and rotate the tong for a final time, one minute in one direction, stop, and reverse the direction of rotation for another minute, this time ending with the rotary gear in the “open throat” position.

16. Extend all hydraulic cylinders, and inspect cylinder rods for signs of mechanical damage, flaking, or rust. Farr recommends that damaged cylinders be replaced prior to storage. If you are using a frame-mounted tool, the tong must be lowered onto the backup in order to remove the risk of sudden and catastrophic movement when pressure is removed from the float cylinders. Cover the top of the backup with protective cloth to protect the paint on the backup. Place two wooden beams across the top of the tong, ensuring that the beams have a minimum size of 4” x 4” x the width of the tong. Cover the tops of the wooden beams with more protective cloth to prevent paint damage to the tong. When lowering the tong onto the beams, ensure that the beams come into flat contact with the bottom of the tong, away from bearing caps, brake bands, or other protrusions on the bottom of the tong. Ensure that the tong hanger chains are loose, but not dangling into contact with the hangers or top plate of the tong.

DEPRESSURIZATION PROCEDURE FOR STORAGE:

1) Rotate the tong to the “open throat” position.

2) Exercise each hydraulic cylinder several times - open the tong and backup doors (if equipped), retract and extend the remote backing pin ramp (if equipped), retract and extend the float cylinders. Leave all cylinders except for the door cylinders in their fully retracted position. The general idea is to have as little of the chrome cylinder rods exposed as possible.

3) De-energize the power unit.

4) Repeatedly actuate the tong motor control valve lever IN BOTH DIRECTIONS to dissipate any residual pressure in the valve and motor.

5) Remove the hydraulic SUPPLY line from the equipment.

6) Repeatedly actuate the remaining control valve levers IN BOTH DIRECTIONS to dissipate any residual pressure in the remainder of the hydraulic control system.

7) Connect a low-pressure air supply line (10 PSI or less) to the hydraulic supply line, and force a small amount of the remaining hydraulic fluid from the valve assembly - this will allow for thermal expansion of the hydraulic fluid if the equipment is stored or transported in high ambient temperatures. Failure to do this may result in damaged or destroyed seals in the equipment.

8) Disconnect the hydraulic RETURN line from the equipment.

9) Disconnect remaining hoses such as case drains, or lines connected to the turns counter.

18. If any hydraulic fittings or hoses are leaking they must be repaired or replaced before proceeding.

19. Wipe all excess grease from outside of equipment. Replace the access door panel. Use a solvent-based cleaner on rags to wipe all external surfaces to remove residual grease or hydraulic fluid. Once the outside surfaces have been de-greased, wipe all external surfaces with clean water to remove residual solvent.

20. Farr recommends that chain slings be removed and stored separately. Rigid slings and other rigid suspension devices may remain in place.

21. Apply grease or heavy oil to all exposed cylinder rods.

22. Farr recommends that an anti-corrosive agent such as Tecyl® 506 be applied to all external surfaces EXCEPT cylinder rods (including chain slings). Refer to manufacturer data sheets for proper application and safety information.

DO NOT ALLOW ANTI-CORROSIVE AGENTS TO CONTACT CYLINDER RODS. CYLINDER ROD DAMAGE WILL OCCUR.

23. Allow the anti-corrosive coating ample time to dry - refer to manufacturer data sheets for drying times at room temperature.

24. Wrap entire assembly in 100 gauge (1 mil) corrosion-inhibiting wrap, at least 3 layers thick. Attempt to ensure that the tool is well-sealed within the wrapping, including the bottom.

If possible, store in a sealed, climate controlled environment. If isolated storage is not available, Farr recommends storing your wrapped equipment in a secure, out-of-the-way location, using silica gel desiccant to reduce the humidity within the wrapping. As a guideline, use 125 g. of desiccant for each cubic metre of space, or 3.5 g. per cubic foot.
CALCULATION OF REQUIRED DESICCANT

1) Calculate the trapped air volume by measuring the outside dimensions of the tool to be stored, and treat that as the volume to be stored. For example, the external dimensions of a KT20000 20" power tong are 80.25" x 50.5" x 28", which calculates to an approximate volume of 113500 in³, or 66 ft³ (1.87 m³).

2) Multiply the calculated air volume, in cubic feet, by the recommended amount of desiccant per cubic foot. Carrying forth the example used in the previous step, the required desiccant charge would be 3.5 g x 66 ft³, equaling 231 g. Several manufacturers offer silica gel desiccant in packaged quantities of 125 grams per bag, so two packages of desiccant would be required. Please keep in mind that this is a guideline only - more or less desiccant may be required in extreme environmental conditions.

For best corrosion resistance the equipment should be removed from storage and exercised on a regular basis, depending on the storage environment. Farr recommends that for equipment stored in a salt-water maritime or exposed dusty environment, repeat steps 9 through 24 monthly. For equipment stored in isolated storage in a non-maritime environment, repeat steps 9 through 24 quarterly. Replace desiccant packs at this time - depleted desiccant packs may be treated as regular dunnage.
N. TUBULAR CONNECTION EQUIPMENT RE-COMMISSIONING PROCEDURE

Perform the following recommissioning procedures when removing tubular connection equipment from short or long-term storage back into regular service. These procedures are essential for ensuring proper equipment preparation and operation. The following procedures also assume that the decommissioning and storage procedures recommended by Farr have been strictly observed.

1. Remove all protective plastic wrapping. If there are desiccant packs with the assembly, they may be disposed of with the regular garbage.

2. Remove the access panel on the side of the tong directly adjacent to the shifter mechanism.

3. Wipe excess grease or heavy oil from exposed cylinder rods.

 If applicable, re-connect chain sling to lifting lugs. Perform a visual inspection of all lifting points - if visible damage is seen, including cracks, broken lugs, distorted metal, etc. replace damaged part(s) before placing tong in service. Also inspect all chains, master links, and turnbuckles - again, if any damage is noted replace the damaged part(s) before placing the tong in service. If your company requires yearly certification of lifting equipment, ensure that the most recent test date falls within the past year. Perform recertification if necessary.

4. Generously fill the gear train housing with grease through the access panel, and also through the opening in the rotary gear.

5. Connect the equipment to a hydraulic power unit. Ensure all lines are fully made up to prevent equipment damage from excessive back pressure. Do not neglect to connect the motor drain.

 FAILURE TO ENSURE THAT THE SELF-SEALING SUPPLY AND RETURN LINES ARE FULLY MADE UP MAY RESULT IN CATASTROPHIC EQUIPMENT FAILURE.

6. Energize power unit.

7. Ensure that supply pressure is at or above the tong’s specified operating pressure, and that the return pressure is less than 350 psi.

8. Perform a thorough inspection of pressurized hydraulic lines and fittings. Any leaking hydraulic fluid lines or fittings must be replaced before the equipment is returned to service.

9. Perform a thorough inspection of all seals. Any seal that is leaking or "weeping" must be replaced before the equipment is returned to service.

10. Rotate tong in low gear for 5 minutes while monitoring pressurized seals and hydraulic lines. If a seal, line, or fitting begins to leak while tong is rotating, it must be replaced before the equipment is returned to service. Finish this step with the rotary gear opening facing the gear train. De-energize the power unit.

11. Inspect all flexible hydraulic lines for signs of wear, blistering, or any other signs of potential failure - replace if signs of potential failure are identified.

12. Inspect the gear train housing. If the amount of grease is inadequate, liberally grease the gear train through the access panel, and through the opening in the rotary gear.

13. Inspect top and bottom brake band linings - replace if necessary. Unequal wear of the brake bands indicates that the brake band tension is not evenly adjusted. Refer to the maintenance section of the manual for instructions on properly adjusting brake bands. Ensure that all grease is wiped from brake band linings and the parts of the cage plates that come into contact with the brake band linings.

14. Re-install access panel. Install a set of pre-inspected jaws that are the correct size for the pipe or casing being run.

15. Re-energize power unit.

16. Install load cell. If using a tension load cell, perform a visual inspection and replace any cracked, broken, or distorted components including links and chains. If using a compression load cell, replace any component that has been crushed or otherwise distorted through compression.

17. If applicable, inspect the load cell anchor pins (tension load cell only). Replace the anchor pins if cracking or metal distortion is seen.

18. If applicable, the weld securing the single load cell anchor to the bridge bar main plate must be inspected (compression load cell only). If the integrity of the weld has been compromised, the tong must be removed from service until the weld is repaired. The load cell beam will need to be disconnected and removed so the weld is visible. Before re-installing the beam, liberally grease the anchor pin before reinserting into the load cell beam.

19. Re-energize power unit.
20. Perform a full functional test of the equipment including, if applicable, backup components and float frame components. Report and correct any hydraulic leaks from the hydraulic valve bank, or from any hydraulic cylinders that are used.

21. If using a frame-mounted tong and backup system, raise the tong off the beams that it is resting upon. Remove the beams and protective cloths - inspect the paint on top of the backup and the bottom of the tong to ensure it has not been damaged by the beam.

22. Test safety door feature (if equipped). Open the tong door(s), and attempt to rotate the cage plate at low speed (low gear) in both directions (makeup and breakout). If cage plate begins rotating, the safety door mechanism is not functional, and the tong must be removed from service until the safety door mechanism can be repaired. If the safety door is operating correctly, cage plate rotation will not be inhibited once the door is closed and latched.

NEVER OPERATE YOUR EQUIPMENT WITH A BYPASSED OR MALFUNCTIONING SAFETY DOOR

23. While rotating the cage plate, ensure that the jaws properly cam. If the jaws do not cam properly, the brake bands need to be tightened. Incrementally adjust both the top and bottom brake bands EQUALLY until proper cam action is achieved.

24. When all of the previous steps are completed, you may return your re-commissioned equipment to service.
This page intentionally left blank
Adequate maintenance and proper fluid selection is essential for minimizing hydraulic-related failures. All troubleshooting must be performed by a technician trained in hydraulic systems, and familiar with the equipment design, assembly and operation.

The following troubleshooting instructions are intended to be guidelines only. Any faults not solved through the use of this guide should be referred to our engineering department for their evaluation and recommendations.

A. TONG WILL NOT DEVELOP SUFFICIENT TORQUE

1. Malfunctioning relief valve on tong hydraulic circuit.
 a. POSSIBLE PROBLEM: Relief pressure set too low.
 SOLUTION: Increase setting. To check, block the oil line beyond the relief valve and determine pressure with a gauge.
 b. POSSIBLE PROBLEM: Relief valve is stuck.
 SOLUTION: Check for contamination of oil that may inhibit the way the valve actuates. Remove valve and clean, ensuring that the valve spring operates smoothly.
 c. POSSIBLE PROBLEM: Relief valve is leaking.
 SOLUTION: Check valve seat for scuffing. Check oil seals. Check for particles stuck under the valve system.

2. POSSIBLE PROBLEM: Directional valve is leaking.
 SOLUTION: Check directional valve. Neutral position should return fluid directly to the reservoir. Replace or repair valve to ensure correct operation.

3. POSSIBLE PROBLEM: Power unit is malfunctioning.
 SOLUTION: Troubleshoot power unit (see user’s manual for your particular unit).

4. POSSIBLE PROBLEM: Poor hydraulic pressure at the tong despite adequate pressure at the power unit, or excessive back pressure in the return line.
 SOLUTION: Restrictions exist in line between power unit and tong. Inspect integrity of self-sealing couplings to ensure they are allowing full fluid flow. Check to ensure no other restrictions exist (contaminated catch screens or filters, for example).

5. POSSIBLE PROBLEM: Fluid viscosity is not appropriate (too high or too low).
 SOLUTION: Ensure hydraulic fluid being used is the viscosity recommended by McCoy Drilling & Completions. Power unit pump may not prime if fluid is too heavy, and the hydraulic system will overheat if fluid is too light. Replace with proper viscosity fluid.
 SOLUTION: Hydraulic fluid viscosity is affected by environmental conditions. Ensure the fluid being used is suitable for high or low temperatures. Replace with proper viscosity fluid for the operating conditions if necessary.

6. POSSIBLE PROBLEM: Worn or damaged tong motor causing slippage.
 SOLUTION: Replace or repair worn or damaged motor.

7. POSSIBLE PROBLEM: Damaged bearings or gears causing excessive drag.
 SOLUTION: Replace or repair worn or damaged gears or bearings.

8. POSSIBLE PROBLEM: Jaws slipping on pipe.
 SOLUTION: Ensure jaw dies are not worn to the point that they cannot grip. Ensure the correct sized jaws are in use.

9. POSSIBLE PROBLEM: Torque gauge is indicating incorrectly
 SOLUTION: Incorrect gauge is being used. Ensure gauge is the proper range, and has been properly calibrated for the arm length of the equipment in use.
 SOLUTION: Gauge has been damaged. Check gauge operation and calibration on independent system.

10. POSSIBLE PROBLEM: Load cell is measuring incorrectly.
 SOLUTION: Incorrect load cell is being used.
 SOLUTION: Air is trapped in torque measuring circuit (load cell, hydraulic line, or gauge. Refer to torque measurement troubleshooting in Section 6 of this manual.
 SOLUTION: Load cell has been damaged. Replace load cell, or return to McCoy for repair and re-calibration.
TONG WILL NOT DEVELOP SUFFICIENT TORQUE Cont’d:

11. POSSIBLE PROBLEM: Incorrect motor speed selected.
 SOLUTION: Maximum torque can only be developed when motor is in the lowest speed. Ensure motor is in low speed.

12. POSSIBLE PROBLEM: Incorrect tong gear selected.
 SOLUTION: Maximum torque can only be developed when tong is in low gear. Ensure tong is in low gear.

FARR CANADA CORP. GUARANTEES CALIBRATION OF A LOAD CELL/TORQUE GAUGE ASSEMBLY FOR A PERIOD OF ONE YEAR. FARR CANADA CORP. SUGGESTS THAT THE LOAD CELL/TORQUE GAUGE ASSEMBLY BE RETURNED TO THE FACTORY FOR RE-CALIBRATION ON A YEARLY BASIS.
B. FAILURE OF JAWS TO GRIP PIPE

1. POSSIBLE PROBLEM: Dies have become too dull to provide adequate grip.
 SOLUTION: Replace dies.

2. POSSIBLE PROBLEM: Incorrect jaws are being used.
 SOLUTION: Double-check jaw size to ensure they are rated for the diameter of pipe or casing being run.

3. POSSIBLE PROBLEM: Incorrect dies are being used
 SOLUTION: Ensure dies loaded in the jaws are appropriate for the type of pipe or casing being run.

4. POSSIBLE PROBLEM: Brake band(s) is (are) insufficiently adjusted, not allowing jaws to cam properly.
 SOLUTION: Adjust brake bands to give proper resistance to cage plates.

5. POSSIBLE PROBLEM: Jaw roller broken or worn.
 SOLUTION: Remove jaw assembly and inspect. Replace rollers that are visibly “flat-spotted” or otherwise damaged.
C. TONG RUNNING TOO SLOWLY

1. POSSIBLE PROBLEM: Obstruction in tong hydraulic circuit preventing adequate flow.
 SOLUTION: Inspect self-sealing couplings to ensure they are properly engaged.
 SOLUTION: The main hydraulic lines (supply and discharge) to the tong are obstructed. Remove and clean if required.

2. POSSIBLE PROBLEM: Power unit is not producing adequate flow or pressure.
 SOLUTION: Troubleshoot power unit (see user's manual for your particular unit).

3. POSSIBLE PROBLEM: Tong motor is excessively worn and is leaking hydraulic fluid past the vanes.
 SOLUTION: Replace motor, or rebuild as per Section 7 of this manual.

4. POSSIBLE PROBLEM: Bearings in gear train and rotary section are excessively worn.
 SOLUTION: Overhaul tong. See Section 3 of this manual for tong overhaul procedures.

5. POSSIBLE PROBLEM: Shifter has malfunctioned and the tong is not shifting to high gear.
 SOLUTION: Inspect and repair shift mechanism as necessary.

6. POSSIBLE PROBLEM: Two-speed hydraulic motor (if equipped) is not set to correct speed.
 SOLUTION: Check motor, and set to the correct speed if required.

7. POSSIBLE PROBLEM: Safety door system is not properly adjusted - hydraulic fluid leak past Deltrol valve.
 SOLUTION: Check and adjust safety door system.

8. POSSIBLE PROBLEM: Hydraulic fluid viscosity too high.
 SOLUTION: Ensure hydraulic fluid meets McCoy Drilling & Completions specifications.
 SOLUTION: Ensure hydraulic fluid is appropriate for climatic conditions, especially during cold-weather operation.

9. POSSIBLE PROBLEM: By-pass valve not functioning.
 SOLUTION: Check and repair.
D. GENERAL COMMENTS

The following factors generally contribute to poor hydraulic operation and premature wear of equipment:

1. Contaminated hydraulic fluid due to overuse, overheating, or inadequate fluid filtration.
2. Unsuitable hydraulic fluid, especially in extreme climatic conditions.
3. Defective packing or seals in components of the hydraulic system.
4. Poor or incomplete hydraulic system training. Users must be fully qualified to operate the equipment, and have complete understanding of the hydraulic system.

If your hydraulic troubleshooting procedures involve flow and pressure tests at the power unit, McCoy Completions & Drilling recommends construction of a test rig that can easily be connected to the main suction and discharge ports of the power unit.
Parts & Assemblies

Model 80-2001-8 Shown

Model 80-2001-10 Shown
Gear Train Layout

Technical Manual

SL4500 4-1/2” “Slim” Tong

Section Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>Rotary Gear Assembly (See Pp. 5.12 - 5.13)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Assembly</td>
<td>Idler Gear Assembly (See Pp. 5.4 - 5.5)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>Motor Gear</td>
<td>1</td>
<td>101-4011</td>
</tr>
<tr>
<td>D</td>
<td>Assembly</td>
<td>Reduction Gear Assembly (See Pp. 5.6 - 5.7)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Assembly</td>
<td>Reduction Gear Assembly (See Pp. 5.8 - 5.9)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

MCCOY

MOVING GLOBAL ENERGY FORWARD

DRILLING & COMPLETIONS

TECHNICAL MANUAL

SECTION CONTENTS

5.3
<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>Grease Fitting, 1/4” straight thread</td>
<td>1</td>
<td>02-0097</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>Thrust Washer</td>
<td>2</td>
<td>02-E0001</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>Shaft</td>
<td>1</td>
<td>101-3297</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Inner Ring 1” x 1-1/4” x 1-3/35”</td>
<td>1</td>
<td>02-9027</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>Needle Roller Bearing Drawn Cup 1-1/4” x 1-5/8” x 1-5/55”</td>
<td>1</td>
<td>02-9009</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>Idler Gear</td>
<td>1</td>
<td>101-3293</td>
</tr>
</tbody>
</table>
SL4500 4-1/2” “Slim” Tong

Reduction Gear Assembly (Small)

Diagram showing the components labeled A, B, C, D, E, F, G, and B.
Reduction Gear Assembly (Small)

SL4500 4-1/2” “Slim” Tong

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>Grease Fitting, 1/4” straight thread</td>
<td>1</td>
<td>02-0097</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>Thrust Washer</td>
<td>2</td>
<td>02-E0001</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>Gear Shaft</td>
<td>1</td>
<td>101-3296</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Inner Ring 1” x 1-1/4” x 1-3/35”</td>
<td>2</td>
<td>02-9027</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>Needle Roller Bearing Drawn Cup 1-1/4” x 1-5/8” x 1-5/55”</td>
<td>2</td>
<td>02-9009</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>Bearing Spacer</td>
<td>1</td>
<td>101-3812</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Reduction Gear</td>
<td>1</td>
<td>101-3291</td>
</tr>
</tbody>
</table>
Item List

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>Grease Fitting, 1/4" straight thread</td>
<td>1</td>
<td>02-0097</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>Thrust Washer</td>
<td>2</td>
<td>02-E0001</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>Gear Shaft</td>
<td>1</td>
<td>101-3296</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Needle Roller Bearing Drawn Cup 1-1/4" x 1-5/6" x 1-5/55"</td>
<td>2</td>
<td>02-9009</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>Inner Ring 1" x 1-1/4" x 1-3/35"</td>
<td>2</td>
<td>02-9027</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>Bearing Spacer</td>
<td>1</td>
<td>101-3812</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Reduction Gear</td>
<td>1</td>
<td>101-3292</td>
</tr>
</tbody>
</table>
Rotary Assembly

- **SL4500 4-1/2” “Slim” Tong**

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>3/8” UNC x 2-1/2” Hex Cap Screw</td>
<td>1</td>
<td>09-1056</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>3/8” Flat Washer</td>
<td>1</td>
<td>09-5006</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>3/8” UNC x 4-1/2” Hex Cap Screw</td>
<td>4</td>
<td>09-1064</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>3/8” X 1” UNC Shoulder Bolt</td>
<td>2</td>
<td>09-1118</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>3/8” X 1/2” UNC Shoulder Bolt</td>
<td>2</td>
<td>09-9179</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>2-211 O-Ring</td>
<td>2</td>
<td>02-0340</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Top Cage Plate</td>
<td>1</td>
<td>101-3303</td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>Cage Plate Spacer</td>
<td>4</td>
<td>101-3333</td>
</tr>
<tr>
<td>J</td>
<td>Assembly</td>
<td>Jaw Die Kit (2-3/8” shown - see Pg. 2.8)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Assembly</td>
<td>Rotary Gear Assembly (See Pp. 5.12 - 5.13)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Part</td>
<td>Bottom Cage Plate</td>
<td>1</td>
<td>101-3304</td>
</tr>
<tr>
<td>M</td>
<td>Part</td>
<td>3/8” Lock washer</td>
<td>6</td>
<td>09-5106</td>
</tr>
<tr>
<td>N</td>
<td>Part</td>
<td>3/8” UNC Hex Nut</td>
<td>4</td>
<td>09-5806</td>
</tr>
<tr>
<td>P</td>
<td>Part</td>
<td>Knob</td>
<td>1</td>
<td>02-0017</td>
</tr>
<tr>
<td>Q</td>
<td>Part</td>
<td>3/8” UNC Stud</td>
<td>1</td>
<td>101-4058</td>
</tr>
<tr>
<td>R</td>
<td>Part</td>
<td>Backing Pin Bolt Spacer</td>
<td>1</td>
<td>101-4038</td>
</tr>
<tr>
<td>S</td>
<td>Part</td>
<td>Backing Pin Retainer</td>
<td>1</td>
<td>101-4040</td>
</tr>
<tr>
<td>T</td>
<td>Part</td>
<td>Backing Pin</td>
<td>1</td>
<td>101-4039</td>
</tr>
<tr>
<td>U</td>
<td>Part</td>
<td>1/4” Straight Thread Grease Fitting</td>
<td>2</td>
<td>02-0097</td>
</tr>
</tbody>
</table>
Rotary Gear Assembly

Item	**Type**	**Description**	**Qty**	**Part Number**
A | Part | 7/16" Hex Jam Nut | 38 | 02-E0005
B | Part | PTFE Thrust Washer | 38 | 02-E0073
C | Part | Cam Roller | 38 | 101-4019
D | Part | PTFE Shoulder Bushing | 38 | 02-E0075
E | Part | Roller Shaft | 19 | 101-4655
F | Part | Plain Bushing | 19 | 02-E0074
G | Part | Rotary Gear | 1 | 101-3301
<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Assembly</td>
<td>Door Assembly (See Pp. 5.22 - 5.23)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>External Snap Ring</td>
<td>4</td>
<td>02-E0004</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>Shoulder Bushing</td>
<td>2</td>
<td>02-E0003</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Door Post</td>
<td>2</td>
<td>101-3306</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>3/8" NC x 3" Hex Cap Screw</td>
<td>15</td>
<td>09-1058</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>3/8" NC x 3-1/2" Hex Cap Screw</td>
<td>11</td>
<td>09-1060</td>
</tr>
<tr>
<td>G</td>
<td>Assembly</td>
<td>Rigid Sling Assembly (See Pp. 5.24 - 5.25)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Assembly</td>
<td>Motor Assembly (See Pp. 5.18 - 5.19)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Assembly</td>
<td>Hydraulic Valve Assembly (See Pp. 5.16 - 5.17)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Part</td>
<td>3/8" NC x 5" Hex Cap Screw</td>
<td>4</td>
<td>09-1066</td>
</tr>
<tr>
<td>L</td>
<td>Part</td>
<td>Top Plate</td>
<td>1</td>
<td>101-3361</td>
</tr>
<tr>
<td>M</td>
<td>Part</td>
<td>Body Spacer</td>
<td>2</td>
<td>101-3333</td>
</tr>
<tr>
<td>N</td>
<td>Part</td>
<td>Bottom Plate</td>
<td>1</td>
<td>101-3362</td>
</tr>
<tr>
<td>P</td>
<td>Part</td>
<td>Gearbox Cover</td>
<td>1</td>
<td>101-3317</td>
</tr>
<tr>
<td>Q</td>
<td>Part</td>
<td>3/8" Lock washer</td>
<td>44</td>
<td>09-5106</td>
</tr>
<tr>
<td>R</td>
<td>Part</td>
<td>3/8" NC Hex Nut</td>
<td>30</td>
<td>09-5806</td>
</tr>
<tr>
<td>S</td>
<td>Part</td>
<td>Wear Button</td>
<td>16</td>
<td>101-3389</td>
</tr>
<tr>
<td>T</td>
<td>Part</td>
<td>1/4" NC x 1/2" Hex Socket FHCS</td>
<td>16</td>
<td>09-4003</td>
</tr>
<tr>
<td>U</td>
<td>Part</td>
<td>Leg Plate (typ. welded to front leg weldment - shown for illustration)</td>
<td>2</td>
<td>101-4034</td>
</tr>
<tr>
<td>V</td>
<td>Weldment</td>
<td>Lined Brake band Weldment (See Pp. 5.20 - 5.21)</td>
<td>2</td>
<td>101-3393</td>
</tr>
<tr>
<td>W</td>
<td>Part</td>
<td>3/8" NC x 2-1/2" Hex Bolt</td>
<td>4</td>
<td>09-1056</td>
</tr>
</tbody>
</table>
SL4500 4-1/2” “SLIGHT” TONG

Section Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>1/4" NC x 3/4" Hex Cap Screw</td>
<td>2</td>
<td>09-1005</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>1/2" NC Thin Nylock Nut</td>
<td>3</td>
<td>09-5610S</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>1/2" Narrow Washer</td>
<td>3</td>
<td>09-5119</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Cable Guide Holder</td>
<td>1</td>
<td>101-4236</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable Guide Holder Retainer</td>
<td>2</td>
<td>02-E0025</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>Safety Door Valve</td>
<td>1</td>
<td>08-0337</td>
</tr>
<tr>
<td>F</td>
<td>Weldment</td>
<td>1/4" NPT 90 Degree Fitting</td>
<td>6</td>
<td>08-0284</td>
</tr>
<tr>
<td>G</td>
<td>Weldment</td>
<td>Valve Mount</td>
<td>1</td>
<td>101-4101</td>
</tr>
<tr>
<td>H</td>
<td>Assembly</td>
<td>Torque Gauge Mount</td>
<td>1</td>
<td>101-4403</td>
</tr>
<tr>
<td>J</td>
<td>Part</td>
<td>DVA35 Valve Assembly</td>
<td>1</td>
<td>VARIES</td>
</tr>
<tr>
<td>K</td>
<td>Part</td>
<td>HITCH PIN : 148 X 2.938:1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Part</td>
<td>1/4" Narrow Washer</td>
<td>4</td>
<td>09-1119</td>
</tr>
<tr>
<td>M</td>
<td>Part</td>
<td>1/4" NC Nylock Nut</td>
<td>4</td>
<td>09-5701</td>
</tr>
<tr>
<td>N</td>
<td>Part</td>
<td>Valve</td>
<td>1</td>
<td>10-9024A</td>
</tr>
<tr>
<td>P</td>
<td>Part</td>
<td>1/4" NC x 2" Hex Cap Screw</td>
<td>2</td>
<td>09-1015</td>
</tr>
<tr>
<td>Q</td>
<td>Part</td>
<td>3/8" NC x 1" Hex Cap Screw</td>
<td>4</td>
<td>09-1046</td>
</tr>
<tr>
<td>R</td>
<td>Part</td>
<td>3/8" Lock washer</td>
<td>6</td>
<td>09-5106</td>
</tr>
<tr>
<td>S</td>
<td>Part</td>
<td>3/8" NC x 2" Hex Cap Screw</td>
<td>4</td>
<td>09-1054</td>
</tr>
<tr>
<td>T</td>
<td>Part</td>
<td>Valve Body</td>
<td>1</td>
<td>08-1327</td>
</tr>
</tbody>
</table>
Item | Type | Description | Qty | Part Number
--- | --- | --- | --- | ---
A | Part | #20 (1-1/4") Split Flange Kit | 2 | 02-9217
 | Part | O-Ring | 2 |
 | Part | #20 (1-1/4") Split Flange | 4 |
 | Part | 7/16" Lock washer | 8 |
 | Part | 7/16" NC x 1-1/2" Hex Bolt | 8 |
B | Part | Flange Fitting | 1 | 02-E0022
C | Part | RINEER GA 15-13/6.5 (2 SPEED) Hydraulic Motor | 1 | 87-0008
D | Part | 1/2" Lock washer | 4 | 09-5110
E | Part | 1/2" NC x 1-1/2" Hex Cap Screw | 4 | 09-1170
F | Part | 90 Degree Flange Fitting | 1 | 02-9216
G | Part | 1/4" NC x 3/8" Hex Socket Set Screw | 2 | 09-0107
H | Part | Motor Gear | 1 | 101-4011
J | Part | Thrust Washer | 1 | 02-E0009
K | Part | Square Motor Key 5/16" x 5/16" x 1-3/4" (Not Shown) | 1
Item | **Type** | **Description** | **Qty** | **Part Number**
--- | --- | --- | --- | ---
A | Part | 3/8" NC Hex Nut | 1 | 09-5806
B | Part | 3/8" Lock washer | 1 | 09-5106
C | Weldment | Lined Brake band Weldment | 2 | 101-3393
D | Assembly | Belleville Washer Assembly | 8 | 101-3272
E | Part | 3/8" NC x 3-1/4" Hex Cap Screw | 1 | 09-1059
F | Part | Brake band Retainer | 1 | 101-3975
G | Part | 3/8" x 5/8" Shoulder Bolt | 2 | 02-E0045
<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>Cable Guide Holder</td>
<td>1</td>
<td>101-4235</td>
</tr>
<tr>
<td>A1</td>
<td>Part</td>
<td>Safety Door Plunger</td>
<td>1</td>
<td>101-4360</td>
</tr>
<tr>
<td>A2</td>
<td>Part</td>
<td>Push-Pull Control Cable</td>
<td>1</td>
<td>02-E0026</td>
</tr>
<tr>
<td>A2</td>
<td>Part</td>
<td>7/16" UNF Hex Jam Nut</td>
<td>1</td>
<td>09-5508</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>Cable Guide Guard</td>
<td>1</td>
<td>101-4237</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>3/8" Lock washer</td>
<td>2</td>
<td>09-5106</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>3/8" NC x 1-3/4" Hex Cap Screw</td>
<td>1</td>
<td>09-1557</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>3/8" NC x 4-1/2" Hex Cap Screw</td>
<td>1</td>
<td>09-1064</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>1/4" Straight Thread Grease Fitting</td>
<td>1</td>
<td>02-0097</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Shoulder Bushing</td>
<td>2</td>
<td>02-E0003</td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>Detent c/w button</td>
<td>1</td>
<td>02-0899</td>
</tr>
<tr>
<td>J</td>
<td>Part</td>
<td>Top Plate (shown for illustration)</td>
<td>1</td>
<td>101-3361</td>
</tr>
<tr>
<td>K</td>
<td>Part</td>
<td>3/8" NC Hex Nut</td>
<td>2</td>
<td>09-5806</td>
</tr>
<tr>
<td>L</td>
<td>Part</td>
<td>External Snap Ring</td>
<td>4</td>
<td>02-E0004</td>
</tr>
<tr>
<td>M</td>
<td>Part</td>
<td>Door Post</td>
<td>2</td>
<td>101-3306</td>
</tr>
<tr>
<td>N</td>
<td>Weldment</td>
<td>Door Weldment</td>
<td>1</td>
<td>101-4300</td>
</tr>
<tr>
<td>P</td>
<td>Part</td>
<td>Compression Spring</td>
<td>1</td>
<td>C0460-0050-1125</td>
</tr>
<tr>
<td>Q</td>
<td>Part</td>
<td>Wave Spring</td>
<td>1</td>
<td>02-9267</td>
</tr>
<tr>
<td>R</td>
<td>Part</td>
<td>Latch Weldment</td>
<td>1</td>
<td>101-3530</td>
</tr>
<tr>
<td>S</td>
<td>Part</td>
<td>3/8" x 3/4" Shoulder Bolt</td>
<td>1</td>
<td>09-0223</td>
</tr>
<tr>
<td>Item</td>
<td>Type</td>
<td>Description</td>
<td>Qty</td>
<td>Part Number</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>A</td>
<td>Weldment</td>
<td>Rigid Sling Weldment</td>
<td>1</td>
<td>101-4137</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>0.148" x 2.938" Hitch Pin</td>
<td>2</td>
<td>02-0028</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>3/4" Narrow Washer</td>
<td>4</td>
<td>09-5013</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Rigid Sling Pin</td>
<td>2</td>
<td>02-E0008</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>3/8" NC x 3-1/2" Hex Cap Screw</td>
<td>8</td>
<td>09-1060</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>Rigid Sling Leveling Bolt</td>
<td>4</td>
<td>02-E0038</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>1/2" NC Hex Nut</td>
<td>4</td>
<td>09-9124</td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>Rigid Sling Lifting Lug</td>
<td>4</td>
<td>101-3337</td>
</tr>
<tr>
<td>J</td>
<td>Part</td>
<td>Rigid Sling Adjustment Bolt Spacer</td>
<td>4</td>
<td>101-4138</td>
</tr>
<tr>
<td>K</td>
<td>Part</td>
<td>3/8" Lock washer</td>
<td>8</td>
<td>09-5106</td>
</tr>
<tr>
<td>L</td>
<td>Part</td>
<td>3/8" NC Hex Nut</td>
<td>8</td>
<td>09-5806</td>
</tr>
</tbody>
</table>
Backup Assembly

Technical Manual

SL4500 4-1/2" "Slim" Tong

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Assembly</td>
<td>Hydraulic Cylinder Assembly</td>
<td>1</td>
<td>101-4336</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>Cylinder Pin</td>
<td>1</td>
<td>101-3676</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>External Retaining Ring</td>
<td>4</td>
<td>02-E0036</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>3/4" Narrow Flat washer</td>
<td>1</td>
<td>09-5013</td>
</tr>
<tr>
<td>E</td>
<td>Weldment</td>
<td>Backup Body Weldment</td>
<td>1</td>
<td>101-4337</td>
</tr>
<tr>
<td>F</td>
<td>Assembly</td>
<td>Jaw Die Kit (2-3/8" shown - see Pg. 2.13)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Cylinder Pin</td>
<td>1</td>
<td>101-4329</td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>Jaw Retainer Bolt</td>
<td>2</td>
<td>101-4264</td>
</tr>
<tr>
<td>J</td>
<td>Part</td>
<td>3/8" x 1" UNC Socket Head Shoulder Screw</td>
<td>1</td>
<td>09-1118</td>
</tr>
<tr>
<td>K</td>
<td>Part</td>
<td>External Retaining Ring</td>
<td>2</td>
<td>02-E0037</td>
</tr>
<tr>
<td>L</td>
<td>Part</td>
<td>Lever Pin</td>
<td>1</td>
<td>101-4330</td>
</tr>
<tr>
<td>M</td>
<td>Part</td>
<td>3/8" x 1/2" UNC Socket Head Shoulder Screw</td>
<td>1</td>
<td>09-9179</td>
</tr>
<tr>
<td>N</td>
<td>Part</td>
<td>2-213 O-Ring</td>
<td>1</td>
<td>02-0347</td>
</tr>
<tr>
<td>O</td>
<td>Part</td>
<td>1-1/4" Plain Narrow Washer</td>
<td>2</td>
<td>02-E0043</td>
</tr>
<tr>
<td>P</td>
<td>Part</td>
<td>Cam Arm</td>
<td>1</td>
<td>101-3672</td>
</tr>
<tr>
<td>Q</td>
<td>Part</td>
<td>Compression Load Cell, CC-108</td>
<td>1</td>
<td>10-0008C</td>
</tr>
<tr>
<td>R</td>
<td>Weldment</td>
<td>Load Cell Holder Weldment</td>
<td>1</td>
<td>101-4340</td>
</tr>
<tr>
<td>S</td>
<td>Part</td>
<td>5/16" Narrow Flat washer</td>
<td>2</td>
<td>02-E0044</td>
</tr>
<tr>
<td>T</td>
<td>Part</td>
<td>5/16" NC x 4" Hex Cap Screw</td>
<td>2</td>
<td>09-1024</td>
</tr>
</tbody>
</table>
Rear Leg Assembly

SL4500 4-1/2” “Slim” Tong

Technical Manual

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>3/4” Lock washer</td>
<td>4</td>
<td>09-5118</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>3/4” NC x 3-1/2” Hex Cap Screw</td>
<td>1</td>
<td>09-1300</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>Rear Leg Spring</td>
<td>2</td>
<td>997-13</td>
</tr>
<tr>
<td>D</td>
<td>Weldment</td>
<td>Backup Support Plate</td>
<td>2</td>
<td>101-3885</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>3/4” NC x 5” Hex Cap Screw</td>
<td>1</td>
<td>09-1306</td>
</tr>
<tr>
<td>F</td>
<td>Weldment</td>
<td>Rear Leg Weldment</td>
<td>1</td>
<td>101-3883</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>3/4” Hex Nut</td>
<td>2</td>
<td>09-5818</td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>0.093” x 1.125” Hitch Pin</td>
<td>2</td>
<td>02-E0046</td>
</tr>
<tr>
<td>J</td>
<td>Part</td>
<td>Support Rod</td>
<td>1</td>
<td>101-3891</td>
</tr>
</tbody>
</table>
FRONT LEG ASSEMBLY

SL4500 4-1/2” “SLIM” TONG

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>3/8" NC x 3-1/2" Hex Cap Screw</td>
<td>4</td>
<td>09-1060</td>
</tr>
<tr>
<td>B</td>
<td>Weldment</td>
<td>Front Leg Weldment</td>
<td>2</td>
<td>101-3661</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>3/8" Lock washer</td>
<td>8</td>
<td>09-5106</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>3/8" NC Hex Nut</td>
<td>8</td>
<td>09-5806</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>1-5/8" Plain Narrow Flat washer</td>
<td>2</td>
<td>101-4446</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>Leg Spring</td>
<td>2</td>
<td>02-0920</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Bottom Spring Support</td>
<td>2</td>
<td>101-4339</td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>3/8" NC x 2" Hex Cap Screw</td>
<td>2</td>
<td>09-1054</td>
</tr>
</tbody>
</table>
This page intentionally left blank
A. BASIC TORQUE MEASUREMENT

Basic torque measurements are performed using a simple hydraulic measurement system. A hydraulic load cell connects to a calibrated torque gauge through a reinforced flexible hydraulic hose. The torque gauge is factory-calibrated to display accurate torque measurements for a tong or tong and backup assembly with a particular arm length. The arm length is a measurement from the centre of the pipe or casing to the centre of the force being applied to the load cell.

Two load cell options are available. A tension load cell is typically used with a suspended stand-alone tong. This application requires that the load cell be attached to the rear of the tong as part of the restraint line that opposes the force generated when the tong makes up or breaks out a joint. A compression load cell is used in a tong and backup assembly, and is typically located on the rear of the backup between the backup and a stationary frame. The load cell must be located in the centre of the compression force vector generated between the backup and the frame.

Hydraulic force generated by a load cell is transmitted to the torque gauge via a reinforced flexible hydraulic line. The hydraulic force is displayed as torque in units of Ft.-Lbs. The torque gauge has a red “peak torque” indicator that tracks with the torque gauge needle to the point of highest torque, and remains at the point of highest torque until manually reset. Note that every model of tong and tong and backup assembly has a unique arm length, and the torque gauge must be calibrated for that arm length. Torque gauges that are not calibrated for the arm length of the tool in service will not display correct torque. To ensure correct torque measurement, ensure the arm length or “handle” as displayed on your torque gauge matches the arm length of the tool in service as listed on the specifications page of the technical manual.

The images on this page are for illustration purposes only and may not accurately represent the torque gauge and load cell that have been supplied with your equipment.

TORQUE GAUGES AND LOAD CELLS ARE FACTORY-SUPPLIED SUPPLIED AS MATCHED CALIBRATED PAIRS. IF REPLACING EITHER COMPONENT THE LOAD CELL AND TORQUE GAUGE MUST BE RETURNED TO THE FACTORY FOR RE-CALIBRATION BEFORE PLACED INTO SERVICE.
BASIC TORQUE MEASUREMENT (Continued:)

The images on the preceding page are for illustration purposes only and may not accurately represent the torque gauge and load cell that have been supplied with your equipment. Please note that the parts listed in the following table are correct for accurate torque measurement while using the equipment for which this manual is supplied.

THE TORQUE GAUGE USED IS FULLY DEPENDANT UPON THE ARM LENGTH AND TORQUE RANGE OF THE EQUIPMENT IN USE. THE PART NUMBERS LISTED IN THE FOLLOWING TABLES ARE CORRECT FOR ACCURATELY MEASURING TORQUE USING THE EQUIPMENT FOR WHICH THIS MANUAL IS SUPPLIED.

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assembly</td>
<td>24" Arm - 8000 Lbs.-Ft. Torque Gauge / Tension Load Cell Assembly</td>
<td>1</td>
<td>10-0025T</td>
</tr>
<tr>
<td>1</td>
<td>Part</td>
<td>24" Arm 8,000 Lbs.-Ft Torque Gauge</td>
<td>1</td>
<td>10-0025G</td>
</tr>
<tr>
<td>2</td>
<td>Part</td>
<td>Tension Load Cell, 4.08 in²</td>
<td>1</td>
<td>10-0008T</td>
</tr>
<tr>
<td>3</td>
<td>Part</td>
<td>Hydraulic Hose</td>
<td>1</td>
<td>02-0069</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assembly</td>
<td>18" Arm - 4K/ 8.5K Torque Gauge / Comp. Load Cell Assembly</td>
<td>1</td>
<td>10-0025C</td>
</tr>
<tr>
<td>1</td>
<td>Part</td>
<td>18" Arm 8,500 Lbs.-Ft Torque Gauge</td>
<td>1</td>
<td>10-0025G</td>
</tr>
<tr>
<td>2</td>
<td>Part</td>
<td>Compression Load Cell, 8 in²</td>
<td>1</td>
<td>10-0008C</td>
</tr>
<tr>
<td>3</td>
<td>Part</td>
<td>Hydraulic Hose</td>
<td>1</td>
<td>02-0069</td>
</tr>
</tbody>
</table>
This is the standard tension load cell supplied by McCoy Drilling & Completions | Farr. Contact our sales department for information about optional application-specific tension load cells.

Illustration 6.A.4: Tension Load Cell Exploded

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assembly</td>
<td>Tension Load Cell, 4.08 in²</td>
<td>1</td>
<td>10-0008T</td>
</tr>
<tr>
<td>A</td>
<td>Part</td>
<td>O-Ring</td>
<td>1</td>
<td>02-0800</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>Load Cell Body</td>
<td>1</td>
<td>LC99-104</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>1/4" NC x 1/2" Binding Head Machine Screw</td>
<td>1</td>
<td>09-0045A</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Stat-O-Seal</td>
<td>1</td>
<td>02-0307</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>O-Ring</td>
<td>1</td>
<td>02-0350</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>O-Ring</td>
<td>1</td>
<td>08-0596</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Load Cell Piston</td>
<td>1</td>
<td>LC99-101</td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>Load Cell End</td>
<td>1</td>
<td>LC99-003</td>
</tr>
<tr>
<td>J</td>
<td>Part</td>
<td>Flange Gasket</td>
<td>1</td>
<td>02-0073</td>
</tr>
<tr>
<td>K</td>
<td>Part</td>
<td>Load Cell Rod</td>
<td>1</td>
<td>LC99-002</td>
</tr>
<tr>
<td>L</td>
<td>Part</td>
<td>Wiper</td>
<td>1</td>
<td>08-1558</td>
</tr>
<tr>
<td>M</td>
<td>Part</td>
<td>3/8" NC x 3/8" Cup Point Hex Set Screw</td>
<td>2</td>
<td>09-0106</td>
</tr>
<tr>
<td></td>
<td>Seal Kit</td>
<td>Replacement Seal Kit 4.08 in² Tension Load Cell</td>
<td></td>
<td>02-4578</td>
</tr>
</tbody>
</table>
This is the standard hydraulic compression load cell supplied by McCoy Drilling & Completions. Contact our sales department for information about optional application-specific compression load cells.

Electronic compression load cells are used for some WinCatt™ applications.

Table: Assembly Details

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td></td>
<td>Compression Load Cell, 8 in²</td>
<td>1</td>
<td>10-0008C</td>
</tr>
<tr>
<td>A</td>
<td>Part</td>
<td>5/16" UNC x 1" Hex Socket Head Cap Screw</td>
<td>1</td>
<td>09-2026</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>Load Plate</td>
<td>1</td>
<td>E360-A</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>5/16" UNC x 3/4" Hex Socket Head Cap Screw</td>
<td>6</td>
<td>09-2024</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Retainer Ring</td>
<td>1</td>
<td>E360-8</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>Diaphragm</td>
<td>1</td>
<td>E358-2</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>Diaphragm Casing</td>
<td>1</td>
<td>E360-C</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Street Elbow</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>1/4" NPT Brass Plug</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Illustration 6.A.5: Compression Load Cell Exploded
Torque Measurement

SL4500 4-1/2” “Slim” Tong

Illustration 6.A.6: Turn Counter Encoder Mount Exploded

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Part</td>
<td>6-32 x 3/8” Hex Socket Head Set Screw</td>
<td>4</td>
<td>60-0001</td>
</tr>
<tr>
<td>B</td>
<td>Part</td>
<td>Helical Flexible Encoder Shaft Coupling</td>
<td>1</td>
<td>60-0130N</td>
</tr>
<tr>
<td>C</td>
<td>Part</td>
<td>Internal Retainer Ring</td>
<td>2</td>
<td>1376-13</td>
</tr>
<tr>
<td>D</td>
<td>Part</td>
<td>Bearing</td>
<td>2</td>
<td>1376-05</td>
</tr>
<tr>
<td>E</td>
<td>Part</td>
<td>Encoder Housing</td>
<td>1</td>
<td>1392-104A</td>
</tr>
<tr>
<td>F</td>
<td>Part</td>
<td>Internal Retainer Ring</td>
<td>1</td>
<td>02-0436</td>
</tr>
<tr>
<td>G</td>
<td>Part</td>
<td>Encoder Shaft</td>
<td>1</td>
<td>1392-103A-01</td>
</tr>
<tr>
<td>H</td>
<td>Part</td>
<td>Encoder Gear</td>
<td>1</td>
<td>01-0320A-M</td>
</tr>
<tr>
<td>J</td>
<td>Part</td>
<td>10-24 x 1-1/4” Hex Socket Head Set Screw</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Technical Manual

Section Contents

6.5
B. TROUBLESHOOTING

Under normal operating conditions, and with proper maintenance, the torque gauge and load cell system are designed to give lasting trouble-free performance. Faulty indication on the gauge will very often define a fault within the gauge.

IF TROUBLESHOOTING REVEALS THAT THERE IS INSUFFICIENT FLUID IN THE SYSTEM, BEFORE RECHARGING, CHECK THAT ALL SYSTEM COMPONENTS ARE FREE FROM DAMAGE. THIS WILL ENSURE THAT FLUID LOSS WILL NOT CONTINUE AFTER RELOADING

1. **Symptom:** No indication on gauge.
 - **Possible Problem:** Obstruction in hydraulic hose.
 - **Solutions:**
 - Check hydraulic hose for kinks.
 - Replace hydraulic hose.
 - **Possible Problem:** Loss of hydraulic fluid.
 - **Solution:** Recharge hydraulic fluid (see Section 6.C). NOTE: Ensure any breaches in the hydraulic system between the load cell and torque gauge are repaired to prevent further fluid loss.
 - **Possible Problem:** Internal mechanism of torque gauge is damaged.
 - **Solution:** Replace gauge.

2. **Symptom:** Gauge indication unexpectedly high.
 - **Possible Problem:** Excessive hydraulic fluid.
 - **Solutions:**
 - Completely drain hydraulic fluid from torque gauge/load cell system. Recharge following the procedure in Section 6.C.
 - **Possible Problem:** Internal mechanism of gauge is damaged.
 - **Solution:** Replace gauge.
 - **Possible Problem:** Incorrect torque gauge in use (not part of the original torque gauge/load cell pair).
 - **Solution:** Replace gauge with gauge properly calibrated for the load cell in service.

3. **Symptom:** Gauge indication unexpectedly low
 - **Possible Problem:** Insufficient hydraulic fluid.
 - **Solution:** Recharge hydraulic fluid (see Section 6.C). NOTE: Ensure any breaches in the hydraulic system between the load cell and torque gauge are repaired to prevent further fluid loss.
 - **Possible Problem:** Obstruction in hydraulic hose.
 - **Solutions:**
 - Check hydraulic hose for kinks.
 - Replace hydraulic hose.
 - **Possible Problem:** Snub line not at right-angle to tong handle.
 - **Solution:** Check angle of snub line and correct if necessary.
 - **Possible Problem:** Internal mechanism of gauge is damaged.
 - **Solution:** Replace gauge.
 - **Possible Problem:** Incorrect torque gauge in use (not part of the original torque gauge/load cell pair).
 - **Solution:** Replace gauge with gauge properly calibrated for the load cell in service.

4. **Symptom:** Gauge indication is erratic or sluggish
 - **Possible Problem:** Insufficient hydraulic fluid in torque measurement section.
 - **Solution:** Recharge hydraulic fluid (see Section 6.C). NOTE: Ensure any breaches in the hydraulic system between the load cell and torque gauge are repaired to prevent further fluid loss.
 - **Possible Problem:** Loss of damping fluid in torque gauge.
 - **Solution:** Top up or refill damping fluid (NOTE: Ensure leakage points in gauge are identified and repaired to prevent further loss of damping fluid).
 - **Possible Problem:** Air bubbles in hydraulic fluid in the torque measurement system.
 - **Solution:** Bleed air from load cell and torque gauge and top up fluid (if necessary) as per Section 6.C.
 - **Possible Problem:** Internal mechanism of gauge is damaged.
 - **Solution:** Replace gauge.
C. Periodic Inspection and Maintenance

1. Inspection
 The torque measurement system supplied with your equipment is designed and built to provide years of trouble-free service with minimum maintenance. Periodic inspections of the load cell, hydraulic lines and fittings are recommended in order to keep the system in top operating condition. A thorough inspection should be made at each rig-up.

2. Fluid Recharge
 Recharge hydraulic system with W15/16 fluid through the check valve on the torque indicating gauge. Recharging must only be performed when there is no load on the load cell. Refer to the illustrations on pages 6.3 & 6.4 for guidance if required.
 a. Place the torque indicating gauge higher than the load cell. Remove the brass 1/4” cap from the fitting on the check valve on the top of the gauge.
 b. Connect the hand pump to the check valve fitting.
 c. Elevate the load cell so it is higher than the torque gauge and hand pump.

 Un-contained spillage of the hydraulic fluid in this system may contravene governmental environmental regulations, or the environmental regulations and policies of your company. McCoy Drilling & Completions highly recommends placing your load cell in a containment basin before proceeding with the bleeding & refilling process.
 d. Fill hand pump bowl with W15/16 hydraulic fluid.

 Maintain greater-than half full fluid level in the hand pump bowl to avoid pumping air into the system. Do not allow the level to fall below one-half full.
 e. Remove the vent plug screw and Stat-O-Seal (Items C and D on Illustration 6.A.4, or item H on Illustration 6.A.5) to allow trapped air to escape.
 f. Pump fluid into the system until no more air is seen escaping from the vent port.
 g. Replace the vent plug screw and Stat-O-Seal and tighten securely.
 h. Remove load cell from containment vessel and wipe clean. Reclaim the hydraulic fluid (if it is clean) or dispose of all waste materials according to governmental or your company’s prescribed environmental protection regulations.
 i. Disconnect the hand pump from the torque gauge.
 j. Replace the brass cap on the torque gauge check valve fitting.

3. Repair and Calibration
 Load cell and indicator gauge should be returned to authorized repair facility for any repairs or calibration required.
This page intentionally
left blank
Section 7: Hydraulic Component Information

The manufacturer information contained in this section has been obtained from publicly available web sites and has been provided for information purposes only. Farr Canada Corp. does not guarantee the accuracy of the information contained in this section. All original copyrights claimed by the manufacturer(s) apply.
This page intentionally left blank
MOTOR SELECTION GUIDE

15 Series Two Speed

- All available displacements of standard motor.
- Spool valve shift from full to partial displacement.
- Standard shift ratio is 2:1 - Some special ratios available.
- Shift on the run.
- Typical applications - winch, track and wheel drives.

Cross Section - Two Speed Motor
Technical Information - All Styles

VANE CROSSING VANE
The Rineer patented vane crossing vane design produces much higher volumetric and mechanical efficiencies than is possible with a standard vane type design. This design provides a sealing vane between cavities to improve mechanical and volumetric efficiencies.

STARTING AND STALL TORQUE
The Rineer motor produces torque curves which are virtually flat, with starting and stall torque equal to approximately 90-94% of theoretical torque.

MORE POWER STROKES PER REVOLUTION
The 15 Series has four stator cavities and 10 rotor vanes. Each rotor vane works in each stator cavity once per revolution, which results in 40 power strokes per revolution. This helps produce higher mechanical efficiency and flatter torque curves.

BEARING LOADING
The bearings in the 15 Series can accept radial load per the radial capacity chart. Thrust load is not recommended under most conditions. Consult with a Rineer Application Engineer for optional bearing configurations to match your application.

SEALS
Buna N seals are supplied as standard on the Rineer 15 series motors. Viton seals may be ordered as an option.

ROTATING GROUP - 1S or 1H
Under most operating conditions, 1S (standard rotating group parts) should be used. Under some high speed conditions 1H can be specified.

ROTATION
The 15 Series Motor rotates equally well in either direction and smoothly throughout its entire pressure and speed range. Looking into the end of the shaft, rotation is clockwise when oil is supplied to port “A”.

HORSEPOWER LIMITATION
Maximum horsepower limitations may vary with different applications. When using the 15 Series Motor above 75 HP, consult a Rineer Application Engineer.

FILTRATION
25 micron minimum.

FLUID
We suggest premium grade fluids containing high quality rust, oxidation and foam inhibitors, along with anti-wear additives. For best performance, minimum viscosity should be maintained at 100 SSU or higher. Fluid temperature should not exceed 180° F. Elevated fluid temperature will adversely affect seal life while accelerating oxidation and fluid breakdown. Fire resistant fluids may be used with certain limitations. Contact Rineer for additional information.

CASE DRAIN
The 15 Series Motor is designed for either internal or external case drain. Two case drain ports are supplied. When using internal case drain, simply plug the two ports. When using external case drain, use the port at the highest elevation. We recommend case drain pressure of 35 PSI or less when using the standard seals.

CASE DRAIN CIRCULATION
Fluid should be circulated through the case when a temperature differential exists between the motor and the system in excess of 50° F. Should this occur, contact a Rineer Application Engineer.

MOUNTING
The mounting position is unrestricted. The shafts, pilots, and mounting faces should be within .002 TIR.

INTERMITTENT CONDITIONS
Intermittent conditions are to be less than 10% of every minute.

OTHER AVAILABLE MOTORS
For information on additional Rineer Motors, request one of the following publications:

- 37 Series .. Publication DS371003
- 57 Series .. Publication DS571003
- 125 Series .. Publication DS1251003

Technical Information - Two Speed Motor

DISPLACEMENT CHANGE
When a motor is shifted from full to partial displacement the motor is changed to 50%, 35%, or 28% of its original displacement depending on its shift ratio.

STANDARD SHIFT RATIO
The standard 15 Series displacements of 15, 13, 9.5, 8, 7, and 6 CID are available in the 15 Series Two Speed with a shift ratio of 2:1. For example, a 15 CID motor shifted to partial displacement becomes a 7.5 CID motor.

SPECIAL SHIFT RATIOS
There are two special displacements available in the 15 Series Two Speed which offer higher shift ratios, the 10.5 and the 11.5 CID. The 10.5 CID motor has a shift ratio of 3.5:1, which when shifted becomes a 3 CID motor. The 11.5 CID motor has a shift ratio of 2.875:1, which when shifted becomes a 4 CID motor.

OPEN DURING CROSSOVER SPOOLS
Open during crossover spools allow port "A" to be directly connected to port "B" when the spool is shifting between full and partial displacement. Motors with -62 or -65 designations are open during crossover. WARNING! IN SOME WINCH APPLICATIONS, OPEN DURING CROSSOVER SPOOLS (-62 or -65) ARE NOT RECOMMENDED.

CLOSED DURING CROSSOVER SPOOLS
Closed during crossover spools do not allow port "A" to be directly connected to port "B" when the spool is shifting between full and partial displacement. Motors with -63 or -67 designations are closed during crossover. These motors contain an internal factory preset relief valve. This valve protects the motor during shifting only and is not a system relief valve.
SHIFTING METHOD
Selecting between full and partial displacement is accomplished by shifting the two-position spool valve incorporated in the motor. Motors are available in either single or double pilot configurations.

SINGLE PILOT
Single pilot motors require a pilot line to be connected to port “C”. When port “C” is pressurized the spool shifts the motor to partial displacement. When port “C” is vented to tank, an internal spring shifts the spool, returning the motor to full displacement.

DOUBLE PILOT
Double pilot motors require two pilot lines. One line is connected to port “C” while the other line is connected to port “D”. The motor is in full displacement when port “D” is pressurized and port “C” is vented to tank. The motor is in partial displacement when port “C” is pressurized and port “D” is vented to tank.

PILOT PRESSURE
A minimum of 100 PSI over case drain pressure is required to shift the spool. The maximum allowable pressure to port “C” or “D” is 3,500 PSI.

SHIFT ON THE RUN
The 15 Series Two Speed Motor may be shifted on the run while loaded or unloaded.

MAXIMUM SPEED
Maximum rated speed is the same for either full or partial displacement as stated in the performance data.

CASE DRAIN AND CROSS PORT LEAKAGE
The combined case drain and cross port leakage of the 15 Series Two Speed Motor is approximately 1 GPM per 1,000 PSI. This will vary with the oil viscosity.

OTHER INFORMATION
All other information as specified under Technical Information also applies to the 15 Series Two Speed Motor. (See page 5)
Performance Data - Selected Displacements

The above performance data was obtained at 140°F with ISO 46(DTE 25). These values must be maintained to obtain the performance indicated. Contact Rineer Hydraulics, Inc. for additional displacements.
For durable hydraulic motors that meet your demands, specify Rineer.

For over 35 years, we have specialized in only one thing - engineering the right motor for your needs.

Rineer delivers the performance you can count on.

Model Code

<table>
<thead>
<tr>
<th>M015 - 61/62</th>
<th>-1S</th>
<th>-015</th>
<th>-31</th>
<th>-TV</th>
<th>-000</th>
</tr>
</thead>
<tbody>
<tr>
<td>M015 - 61 = 015 Single Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M015 - 62 = 015 Two Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Options:
- 62 = Two Speed Single Pilot Open During Crossover
- 63 = Two Speed Single Pilot Closed During Crossover
- 65 = Two Speed Double Pilot Open During Crossover
- 67 = Two Speed Double Pilot Closed During Crossover

1S = Std.
1H = High Speed

006 = 6 in³ (98cc)/rev.
007 = 7 in³ (115cc)/rev.
008 = 8 in³ (131cc)/rev.
009 = 9.5 in³ (156cc)/rev.
010 = 10.5 in³ (172cc)/rev.
011 = 11.5 in³ (189cc)/rev.
013 = 13 in³ (213cc)/rev.
015 = 15 in³ (246cc)/rev.

Applications

Rineer Hydraulics, Inc. warrants that, at the time of shipment to Purchaser, our product will be free of defects in the material and workmanship. The above warranty is limited to defective products returned by Purchaser to Rineer Hydraulics, Inc., freight prepaid within four hundred and fifty-five (455) days from date of shipment, or one (1) year from date of first use, whichever expires first. We will repair or replace any product or part thereof which is proved to be defective in workmanship or material. There is no other warranty, expressed or implied, and in no event shall Rineer Hydraulics, Inc. be liable for consequential or special damages.

Dismantling the product, operation of the product beyond the published capabilities or for purposes other than that for which the product was designed, shall void this warranty.
Repair Manual

15 Series

Standard Motor

Two Speed Motor

331 Breesport * San Antonio, TX 78216 * (210) 341-6333 FAX (210) 341-1231
WARNING: RINEER RECOMMENDS FOLLOWING ALL STANDARD SHOP SAFETY PRACTICES SPECIFICALLY INCLUDING WEARING OF EYE PROTECTION.

REMOVAL OF SHAFT SEAL

1. Remove snap ring
 - **WARNING:** Use caution when removing snap ring. If released accidentally it can become an airborne hazard.

2. Pry out shaft seal plate with two screwdrivers.
 - 2. Remove seal plate o-ring from groove in bearing bore.

3. Loosen and remove 8 each 10-32 bolts.
 - 2. Pry off seal plate with screwdriver.

4. Loosen and remove 8 each 3/8” bolts with 5/16” socket head wrench.

5. 1) Two of the 3/8” bolt holes are provided with jack screw threads.
 - 2) Insert a piece of 1/4” round stock by 2-1/2” long into each jack screw hole.
 - 3) Screw two 7/16-14 bolts into the jack screw threads until the bearing box is free of the motor.

6. Lift up on the bearing box to remove from motor.

REMOVAL OF WHEEL MOTOR SEAL PLATE AND BEARING BOX

7. 1) Loosen clamp screw in lock nut.
 - 2) Unscrew lock nut and remove.

8. 1) Press shaft out of bearing box.
 - 2) Proceed to step 9, disregarding steps 11 & 12
WARNING: RINEER RECOMMENDS FOLLOWING ALL STANDARD SHOP SAFETY PRACTICES SPECIFICALLY INCLUDING WEARING OF EYE PROTECTION.

DISASSEMBLY OF FRONT HOUSING AND SHAFT

1) Mark one side of the motor for proper assembly, paying careful attention that the cartridge will not be installed upside down.
2) Secure the motor prior to loosening the 5/8-11 bolts.

1) Remove front housing
2) Note: Two 5/16" ball checks and one main body o-ring may be dislodged and fall free.

With the seal plate removed, press shaft and ball bearing out of front housing.

1) Remove snap ring from shaft.
2) Press shaft out of bearing.

1) Place cartridge on any object which will hold it off the table.
2) Remove two each 10-32 place screws.
3) Remove timing plate.

1) Remove o-ring and springs with a small screwdriver.
2) Remove dowels pins.

1) Replace plate on rotor/stator cartridge.
2) Turn rotor/stator cartridge over.
3) Repeat steps 14 & 15.
WARNING: RINEER RECOMMENDS FOLLOWING ALL STANDARD SHOP SAFETY PRACTICES SPECIFICALLY INCLUDING WEARING OF EYE PROTECTION.

INSPECTION AND REPLACEMENT OF PARTS

1. Remove the rotor.
2. Remove both the rotor and stator vanes.
3. Note: On motors manufactured prior to 1987, rotor vane slots and rotor vanes should be numbered so that vanes can be reassembled in the same vane slot.

PLATES: Normal wear results in marking of timing plates which does not impair motor performance. Replacement of the timing plate is required if any smearing, galling, or heat cracks are present.

17

ROTOR: Normal wear results in polishing of rotor faces which does not impair motor performance. Examine the rotor vane slots closely. Polishing down in the slots is normal, but if there is any indication of a "pocket" forming in the wall of the slot, the rotor should be replaced.

18

VANES: Normal wear results in slight flattening of vane tips which does not impair motor performance. Replace vane if radius is reduced by 50%. Clearance between the rotor vane and rotor vane slot varies with the vane selection. The design allows the vane to "lean" slightly in the slot, providing the required mechanical seal.

19

STATOR: Normal wear results in polishing of cam form which does not impair motor performance. Noticeable wear may be apparent along the corner of one side of the stator vane slot. This does not necessarily require replacement of the stator, but may slightly affect volumetric efficiency.

20

INSPECTION AND REPLACEMENT OF PARTS

18

Inspect all springs and seals. We recommend replacement of all seals and springs whenever the motor has been disassembled.

ROTOR: Normal wear results in polishing of rotor faces which does not impair motor performance. Examine the rotor vane slots closely. Polishing down in the slots is normal, but if there is any indication of a "pocket" forming in the wall of the slot, the rotor should be replaced.

21

STATOR: Normal wear results in polishing of cam form which does not impair motor performance. Noticeable wear may be apparent along the corner of one side of the stator vane slot. This does not necessarily require replacement of the stator, but may slightly affect volumetric efficiency.

22

VANES: Normal wear results in slight flattening of vane tips which does not impair motor performance. Replace vane if radius is reduced by 50%. Clearance between the rotor vane and rotor vane slot varies with the vane selection. The design allows the vane to "lean" slightly in the slot, providing the required mechanical seal.

23

INSPECTION AND REPLACEMENT OF PARTS

19

Inspect all parts and replace any parts which obviously show excessive wear or damage.

ROTOR: Normal wear results in polishing of rotor faces which does not impair motor performance. Examine the rotor vane slots closely. Polishing down in the slots is normal, but if there is any indication of a "pocket" forming in the wall of the slot, the rotor should be replaced.

24

Note: Measure the rotor and stator length to the fourth decimal point and supply measurement when ordering rotor, stator, or vanes.
WARNING: RINEER RECOMMENDS FOLLOWING ALL STANDARD SHOP SAFETY PRACTICES SPECIFICALLY INCLUDING WEARING OF EYE PROTECTION.

Assembly of Rotor/Stator Cartridge

1. Reverse the procedures in steps 17, 16, 15, and 14
2. NOTE: Make sure that the radiused edge of each stator vane points to the rotor and the radiused edge of each rotor vane points to the stator.
3. NOTE: Make sure springs are seated in the bottom of the spring pocket in both the rotor and stator.

Assembly of Wheel Motor Front Housing

1. Reverse the procedures in steps 8 thru 3.
2. Screw lock nut onto shaft until all threads are engaged.
3. Tighten clamp screw until lock nut turns with a slight drag.
4. Tighten lock nut until desired rolling drag of bearing is obtained - see procedure Page 9.
5. Tighten clamp screw
6. Tighten all seal plate bolts.

Assembly of Front Housing

1. Press bearing onto shaft.
2. Install snap ring.

Assembly of Motor

1. Place rotor/stator cartridge onto rear housing.
2. NOTE: Make sure assembly marks from step 3 are lined up.

Assembly of Wheel Motor Front Housing

1. Press seal in seal plate.
2. Place seal plate o-ring into groove in the front housing.
3. Press seal plate into front housing.
4. Install snap ring.
5. Proceed to step 30.

Assembly of Motor

1. Install main body o-ring into front housing.
2. Install ball checks into front housing.
3. Place a small amount of grease over ball checks and o-ring.
4. Wipe off excess grease.
WARNING: RINEER RECOMMENDS FOLLOWING ALL STANDARD SHOP SAFETY PRACTICES SPECIFICALLY INCLUDING WEARING OF EYE PROTECTION.

1) Install dowel pins into rotor/stator cartridge.
2) Pour a small amount of clean oil into the cartridge.
3) Install front housing onto rotor/stator cartridge.
4) Make sure alignment marks are lined up.

33

1) Rotate shaft in both directions to assure that the shaft turns smoothly.
2) Torque motor to 190 ft/lbs.
3) Rotate shaft again in both directions to assure that the shaft turns smoothly.

35

NOTE: Spool should be oriented as shown for two speed motors with model codes 62, 63, 68, & 69.

NOTE: Slight design variations may exist in motors manufactured either before or after the printing of this manual.

36

WHEEL MOTOR SHAFT AND BEARING ASSEMBLY PROCEDURE

1) Clean ALL assembly parts w/lacquer thinner.
2) Dip clampnut and clamping bolt separately in lacquer thinner.
3) Press bearing cups into bearing housing. Make sure they are pressed completely against bearing shoulders.
4) Coat inner race of large cone with #609 (green) Loctite and press cone onto the shaft. Make sure the cone is completely against the shoulder of the shaft.
5) Insert shaft and large cone into bearing housing.
6) Coat inner race of small cone with #609 (green) Loctite and press small cone onto shaft.
7) Apply #272 (red) Loctite to the clampnut threads of the shaft. Apply #242 (blue) Loctite to the threads of the clamping bolt and install in the clampnut.
8) Spin clampnut onto shaft with the “B” face towards bearings. After the nut threads are fully engaged, but prior to the nut contacting the bearings, tighten the clamping bolt until there is drag on the clamping nut (see note Fig. 1). Tighten the nut until a 20 to 30 inch pound rolling torque is achieved.
9) Tighten clamping bolt on clampnut to 70 inch pounds and recheck rolling torque. Apply inspectors lacquer to head of the bolt.
10) Allow a minimum of 24 hrs. to dry.

Figure 1
Information:

Bolt Torque -
- Seal Plate (3/8-16) (Wheel Motor only): 45 ft. lbs.

Grease used for bolt threads and o-ring retention:
- Pennzoil 707L RED

Shaft seal assembly lube:
- Mobilgrease special with Moly

Seal Kits:
- Standard 15 series seal kit #0150940
- Standard 15 two speed seal kit #0150940
- Standard 15 wheel motor seal kit #0150936

331 Breesport San Antonio, Texas 78216
210-341-6333 Fax: 210-341-1231 e-mail: sales@rineer.com
Adjustable Relief Valve Cartridges

For Inlets and Mid-section Inlets

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVA35-MRV-1</td>
<td>Main R/V pressure range 500-2000 psi. Factory set @ 1500 psi @ 50 gpm</td>
</tr>
<tr>
<td>DVA35-MRV-2</td>
<td>Main R/V pressure range 2001-2500 psi. Factory set @ 2500 psi @ 50 gpm</td>
</tr>
<tr>
<td>DVA35-MRVP</td>
<td>Main relief valve plug.</td>
</tr>
</tbody>
</table>

MA8

Double-Acting Section
4-Way, 3-Position, Float in Neutral Motor Spool

DA8

Double-Acting Section
4-Way, 3-Position, Hold in Neutral Cylinder Spool

SA8

Single-Acting Section
3-Way, 3-Position, Hold in Neutral Cylinder Spool
Outlets
Tank Return Type

<table>
<thead>
<tr>
<th>Code</th>
<th>End Port</th>
<th>Top Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVA35-TR55</td>
<td>1 1/4" NPT</td>
<td>1 1/4" NPT</td>
</tr>
<tr>
<td>DVA35-TR99</td>
<td>SAE-20</td>
<td>SAE-20</td>
</tr>
<tr>
<td>DVA35-TR00</td>
<td>NON-PORTED HOUSING</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: See Section G. Page 32 for Port Plugs

Brief Circuit Descriptions

Series Circuits
Available in DVA30 sections only

If a machine's work cycle requires simultaneous as well as separate operation of individual hydraulic work functions, a series circuit is right for the job.

As with the other circuits, the oil flows through the open center when all spools are in neutral. Here is no parallel passage in standard series sections because the oil is not restricted by the open center passage. If more than one spool is operated, pump flow goes first to the section closest to the inlet. Return flow from the first section is feedback into the open center for use by downstream sections.

Downstream sections can be series, parallel or tandem and will operate in series with the upstream section.

In series circuits, operating pressure is cumulative. Therefore, the sum of the pressures in the circuits cannot exceed the system or main relief valve setting.

Parallel Circuits

Parallel circuits are the most common on mobile equipment because more than one function can be operated simultaneously and at random. If two or more functions are fully operated at the same time, the one with the highest load will assert priority because the fluid will take the path of least resistance. However, the operator can divide the flow between functions by metering the spools.

Movement of the spool meters or shunts off the flow of oil thru the open center passage and depressurizes the parallel passage. Oil is then available, at the operator's discretion, to all work ports connected to the parallel passage.

Tandem Circuits
(Not available in the program)

Tandem circuits are sometimes called priority or standard circuits by other manufacturers. Tandem sections feed from the open center passage like series sections but the return flow is directed to the tank return passage and is not available downstream.

If a tandem section is followed by a series, or tandem section, operating the tandem section restricts the inlet to assert priority and downstream sections will not function.

Typical Work Section Schematics

[Diagram showing various hydraulic circuits and components]
VA™/VG™ Valve Service Instructions

INTRODUCTION

This manual has been prepared to assist you in the proper maintenance of the VA20™/VA35™ and VG20™/VG35™/VG80™ directional control valves. Before any work is done, we suggest that you read the assembly and disassembly instructions completely.

The first rule of good maintenance is cleanliness, which includes a clean environment. MAKE SURE YOU DISASSEMBLE AND ASSEMBLE YOUR HYDRAULIC EQUIPMENT IN A CLEAN AREA. Dirt is the natural enemy of any hydraulic system.

GENERAL INFORMATION

The VA and VG model valves are updated versions of our proven A20™ and A35™ units. The VG models are cast from compacted graphite, a high strength iron alloy, which allows the valve to be rated to 3500 psi. VA models are cast from gray iron and are rated at 2500 psi. These open-center, directional-control valves are available in parallel, tandem, and series circuitry. As needed, the sectional, stack-type construction provides flexibility for the addition of subtraction of work sections to an existing valve bank. This design also permits the combination of parallel, tandem, and series circuitry in a single bank. The internal coring of each valve section determines its circuitry and the number of gasket seals required.

All sections with optional features, such as port relief valves, crossover relief valves, and anticavitation checks, are dimensionally larger when measured from the top of the port to the bottom of the housing. These are referred to as “hi-boy” sections. Those without work-port options can use the low-profile castings, which are called “lo-boy” sections.

REPLACEMENT PARTS

The illustrations and instructions in this manual apply only to the VA/VG series assemblies, subassemblies, and components. All valve components, except for spools and housings, are available as replacement parts or subassemblies. Spools are home-fitted to their individual housings, so damage to either of these components means the entire section must be replaced.

We recommend that you use only genuine VA/VG series replacement parts in your service program. Manufactured to the same exacting tolerances and quality controls as the original equipment, genuine VA/VG replacement parts may help prevent premature, component failure and costly downtime. Service parts and assemblies are available through your original equipment dealer or any authorized distributor.

MAINTENANCE

Valves are often used in hazardous environments. Inspect them frequently for damage due to improper use, corrosion or normal wear. If needed, repairs should be made immediately.

Always refer to the machine manual for the proper procedure to remove the valve from the machine.

Remove the valve bank from the equipment, disconnecting all hoses, fittings, control handles and linkage connectors that might be attached to the valve. Plug all ports and thoroughly clean the exterior of the valve bank, then the port plugs can be removed.
Exploded View of Work Section

"Lo-Boy" Work Section

Spool Assembly

2 (3 not shown)

Parts List For Work Section

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Qty.</th>
<th>VA/VG20 Part No.</th>
<th>VA/VG35 Part No.</th>
<th>VG80 Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Square Seals</td>
<td>3</td>
<td>391-2881-206</td>
<td>391-2881-200</td>
<td>391-2881-433</td>
</tr>
<tr>
<td>2</td>
<td>Square Seal</td>
<td>1</td>
<td>391-2881-200</td>
<td>391-2881-403</td>
<td>391-2881-670</td>
</tr>
<tr>
<td>3</td>
<td>Square Seals</td>
<td>2</td>
<td>391-2881-206</td>
<td>391-2881-200</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Square Seal</td>
<td>1</td>
<td>391-2881-627</td>
<td>391-2881-626</td>
<td></td>
</tr>
</tbody>
</table>

Series Section Seals

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Qty.</th>
<th>VA/VG20 Part No.</th>
<th>VA/VG35 Part No.</th>
<th>VG80 Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Back Cap Screws</td>
<td>2</td>
<td>391-1433-020</td>
<td>391-1433-009</td>
<td>(4) 391-1402-069</td>
</tr>
<tr>
<td>5A</td>
<td>Back Cap</td>
<td>1</td>
<td>341-6000-100</td>
<td>342-6000-100</td>
<td>341-6085-099</td>
</tr>
<tr>
<td>6</td>
<td>Retainer Plates</td>
<td>3</td>
<td>391-2183-001</td>
<td>391-2183-005</td>
<td>391-2183-157</td>
</tr>
<tr>
<td>7</td>
<td>Back up Rings</td>
<td>2</td>
<td>391-2681-378</td>
<td>391-2681-426</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Spool Seals</td>
<td>2</td>
<td>391-1965-014</td>
<td>391-2887-212</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Retainer Plate Screws</td>
<td>2</td>
<td>391-1433-015</td>
<td>391-1433-002</td>
<td>(4) 391-1402-015</td>
</tr>
<tr>
<td>10</td>
<td>Check Valve Cap</td>
<td>1</td>
<td>391-0561-044</td>
<td>391-0561-044</td>
<td>391-0568-099</td>
</tr>
<tr>
<td>11</td>
<td>O Ring Seal</td>
<td>1</td>
<td>391-2261-204</td>
<td>391-2881-015</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Check Spring</td>
<td>1</td>
<td>391-3581-713</td>
<td>391-3581-713</td>
<td>391-3581-775</td>
</tr>
<tr>
<td>13</td>
<td>Check Valve Poppet</td>
<td>1</td>
<td>391-2481-069</td>
<td>391-2481-069</td>
<td>391-2383-061</td>
</tr>
</tbody>
</table>

*Parallel Sealing Face includes inlets and mid-inlets.
**Not required in Float-in-neutral Sections.
Spring Centered and Detent Spool Operators. See Figure 2

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Stripper Bolt</td>
<td>1</td>
<td>391-1432-022</td>
</tr>
<tr>
<td>15. Centering Spring</td>
<td>1</td>
<td>391-3581-608</td>
</tr>
<tr>
<td>16. Spring Guides</td>
<td>2</td>
<td>391-1642-045</td>
</tr>
<tr>
<td>17. Detent Sleeve</td>
<td>1</td>
<td>391-3283-015</td>
</tr>
<tr>
<td>18. Detent Balls</td>
<td>2</td>
<td>391-0282-010</td>
</tr>
<tr>
<td>19. Detent Spring</td>
<td>1</td>
<td>391-3581-130</td>
</tr>
<tr>
<td>20. Detent Poppet Retainer</td>
<td>1</td>
<td>391-2583-008</td>
</tr>
<tr>
<td>21. Detent Spacer</td>
<td>1</td>
<td>391-3782-208</td>
</tr>
</tbody>
</table>
Valve Disassembly Instructions

Reference exploded view and parts list on page 2 and 3 for work section detail.

Step 1 - Valve Bank

This step is the most critical in the disassembly procedure. It should be followed closely to ensure that the valve bank is properly reassembled after repairs have been made.

With a waterproof, quick-drying marker, mark each casting with a sequential number. Start by marking the inlet casting with the #1 and finish by marking the outer casting with the highest number.

Next, mark the port boss closest to the back cap on each work section with a "B" (for back cap end).

Then, mark the port boss closest to the spool center on each work section with a "C" (for center end).

Finally, if relief valves are removed from the valve bank, they must be marked with the corresponding number of the casting and port location (B or C) from which they were removed. Inlet and mid-inlet relief valves are marked with a casting number only.

Step 2 - Tie Bolts

Remove the four tie bolts that hold the bank together and separate the sections.

NOTE: VA and VG valve tie bolts thread into the outlet casting. VG valve tie bolts pass through the entire bank, requiring washers and hex nuts to be fastened at both ends of the bolt.

Step 3 - Section Seals

The inlet, mid-inlet, and each parallel work section have four section seals. (Fig. 1, items 1 & 2) on the downstream, mating face. Series work sections and the VA/VG35 split flow end inlets have three section seals on the downstream mating face. (Fig. 1, items 1 & 3.) These section seals should be removed and discarded.

REMINDER: ALL WORK MUST BE PERFORMED IN A CLEAN AREA.
Valve Disassembly Instructions

Step 4 - Valve Back Cap
Using a large, Phillips-head screwdriver, remove the two cap screws (Fig. 1, item 4) which secure the back cap to the work section. Lightly tap the end of the screwdriver handle with a hammer to break the adhesive. Remove the back cap (Fig. 1, item 5).

Step 5 - Control Spool and Seals
Grip the spring end of the spool with a clean lint-free cloth and pull the spool out of the housing using a twisting motion. Generally, the rear, retainer plate (Fig. 1, item 6) back-up ring (Fig. 1, item 7) and spool seal (Fig. 1, item 8) will come out with the spool.

CAUTION: For detained spool models, be careful not to remove the detent poppet sleeve (Fig. 2, item 17) unless it is to be serviced.

Using a large, Phillips-head screwdriver, remove the two, retainer-plate screws (Fig. 1, item 9) from the spool clevis end of the work section. Lightly tap the end of the screwdriver handle with a hammer to break the adhesive. Remove the two, retainer plates (Fig. 1, item 6), the back-up ring (Fig. 1, item 7) and the spool seal (Fig. 1, item 8). Tag or mark with the appropriate, work section identification number. (See Step 1) Spool seals (Fig. 1, item 4) and back-up rings (Fig. 1, item 7) should be discarded.

Step 6 - Transition Check
The transition check is located at the bottom center of the work section housing. Carefully clamp the work section in a vise with ports down. Do not clamp on the machined surface. Remove the check-plate cap (Fig. 1, item 10) and its O-ring seal (Fig. 1, item 11). Discard the seal. Remove the check spring (Fig. 1, item 12.) and the check-plate poppet (Fig. 1, item 13).

NOTE: Only cylinder work sections (ports blocked in neutral) have a transition check. Motor sections have only a cap plug.
Valve Disassembly Instructions

Spool Disassembly

Spring Centered Spool

The spring assembly should not be removed from the spool unless these parts need to be replaced. Once the spool is free of the work section housing, it must be handled carefully to avoid damage. Place the spool vertically in a soft-jawed vise, clamping on the flat, spool clevis, and remove the stripper bolt (Fig. 1, item 14) with a wrench.

Lightly tap the stripper bolt with a hammer and a punch to help break the adhesive. Cautions application of heat may be required to free the stripper bolt, since an anaerobic thread adhesive was used during its assembly.

CAUTION: Too much heat may distort the spool.

As the stripper-bolt threads disengage, the spring (Fig. 2, item 15) and spring guides (Fig. 2, item 16) will release abruptly from the spool.

Detent Spool

The detent assembly should not be removed from the spool unless these parts need to be replaced. Wrap the detent sleeve (Fig. 2, item 17) with a clean, lint-free cloth. Grip the cloth-covered sleeve and pull firmly. As the sleeve moves back wards, the detent balls (Fig. 2, item 18) and the detent spring (Fig. 2, item 19) will release abruptly. The cloth should capture these parts and prevent their loss.

Next, clamp the spool in a soft-jawed vise and remove the detent poppet retainer (Fig. 2, item 20). Place an undersized bar through the detent ball bore to serve as a wrench. Lightly tap the detent poppet retainer with a hammer and a punch to help break the adhesive; Cautions application of heat may be required again, since an anaerobic adhesive was also used in the detent retainer assembly.

CAUTION: Too much heat may distort the spool!

CLEANING, INSPECTION, AND REPAIR

1. Inspect the spool bore, transition check seat and spool from each section for deep scratches, gouges or excessive wear. If any of these conditions exist, replace the section. Minor surface damage on the control spool and check poppet can be carefully polished away with a very fine, crocus cloth.

2. Examine the machined surfaces of the valve housing for nicks and burrs that could cause leakage between sections. Lightly stone these surfaces to remove any rough spots.

CAUTION: A shallow milled relief area extends across the O-ring face of the valve housing. This should not be scored or ground off.

3. Wash all parts thoroughly in a cleaning solvent and blow dry before beginning reassembly. Pay special attention to the number and letters marked on the parts in Step 1. If any marks are removed during cleaning, re-mark immediately.

4. Clean adhesive from threads of spool, stripper bolt, housing, cap screws and hex nut with Loctite®Chisel Gasket Remover.
Valve Assembly Instructions

Preparation of Parts
Spray the threads of the new stripper bolt (Fig. 2, item 14) tapped-threaded spool end, all screws and screw holes on both ends of the housing with LOCTITE Primer Grade NF™ and let dry.

CAUTION: Failure to follow the recommended assembly instructions can result in poor performance or product malfunction. Product should be thoroughly tested to ensure proper operation before the valve is placed back into service.

Spring Center Spool Assembly

Step 1 - Spool Assembly-Spring Centered
Clamp the flat, clevis end of the control spool in a soft jawed vise. Apply Parker Super-O-Lube™ to the spool seal (Fig. 1, item 8) and slide it onto the end of the spool away from the clevis. Slide on the back-up ring (Fig. 1, item 7) and retainers plate (Fig. 1, item 6). Position these items onto the spool, so that they do not interfere with the spool operating mechanism during assembly. Do not allow the O-ring to come in contact with the sharp edge of the spool notches.

Step 2 - Attach Spring Guides and Spring
Apply 2 - 3 drops of Loctite 362™ or equivalent assemble adhesive near the middle of the female threads in the spool. Assemble the spring guides (Fig. 2, item 16) centering spring (Fig. 2, item 15) and stripper bolt (Fig. 2, item 14) onto the spool (Reverse of Step 7). Torque the stripper bolt to 175 in. lbs. + 3 in. lbs.

CAUTION: Care must be taken to ensure that the spring retainer is not pinched under the shoulder bolt during assembly. This can result in burrs that may cause spool binding. Check for binding by compressing the spring and guides or by rotating the spring guide nearest the housing.

CAUTION: Follow the adhesive manufacturer’s instructions for proper cleaning and curing. Failure to clean and prepare parts properly may result in assembly failure.

Lightly coat the centering spring with high-temperature grease to prevent rusting. Set the spool assembly aside and let it cure for a minimum of 1 hour. After curing, test the stripper bolt to make certain it can withstand 125 in. lbs. of breakaway torque.
Detent Spool Assembly

Step 1 - Spool Assembly-Detent

Apply Parker Super-O-Lube™ to the spool seal (Fig. 1, item 8) and slide it onto the spool. Slide the back-up ring (Fig. 1, item 7) and the retainer plate (Fig. 1, item 6) onto the spool. Position these items onto the spool, so that they do not interfere with the spool operating mechanism during assembly. Do not allow the O-ring to come in contact with the sharp edge of the spool notches. Apply 3 - 3 drops of Lubesite 262™ or an equivalent, anaerobic adhesive near the middle of the female threads in the spool.

CAUTION: Follow the adhesive manufacturer’s instructions for proper cleaning and curing. Failure to clean and prepare parts properly may result in assembly failure.

Step 2 - Spool Assembly-Detent

Thread the detent ball retainer (Fig. 2, item 20) into the spool end. Torque the detent ball retainer to 175 in-lbs.

Step 3 - Detent Balls and Spring

Next, tightly seat the detent balls (Fig. 2, item 18) detent spring (Fig. 2, item 19) and entire inside diameter of the detent sleeve (Fig. 2, item 17) with high-temperature grease.

Insert the detent spring into the through hole in the detent ball retainer. Place the steel balls in the ends of the spring. Compress the balls and spring, then slip on the detent sleeve. (Note: The detent sleeve is not symmetrical; one end of the sleeve has a lead-in chamfer. This chamfer must face the spool clevis when assembled.) Move the detent sleeve to the neutral or middle position to prevent the subassembly from separating during subsequent steps.
Valve Assembly Instructions

Step 1 - Spool Subassembly

Apply 2 to 3 drops of Lactite 262™ or equivalent to the fillister screw holes on both ends of the housing.

Apply a light coating of clean hydraulic oil to the valve spool. Carefully insert the spool assembly into the housing. Use caution to avoid causing burns. Be careful not to pinch, roll or damage the seals. Make sure that the spool and housing are in the proper orientation (see Step 1, page 6 disassembly).

Step 2 - Spool Seal and Back up

Apply Parker Super-O-Lube™ to the spool seal (Fig. 1, item 4) and slide it onto the spool. Slide on the back-up ring (Fig. 1, item 7). Push both items into the counterbore until they bottom out.

Assemble the two, front, retainer plates (Fig. 1, item 6) using the two short, fillister screws (Fig. 1, item 9). Check retainer plates for proper alignment. Tighten to a final torque of 34 in-lbs. ± 2 in-lbs.

Step 3 - Back cap

Install the back cap using the two long, fillister screws (Fig. 1, item 4). Tighten to a final torque of 34 in-lbs. ± 2 in-lbs.

Caution: Excessive torque will damage the back cap ears!
Valve Assembly Instructions

Step 4 - Install Transition Check

Inspect transition check components for cleanliness. Install check poppet (Fig. 1, item 13) into the transition check cavity. Align the check spring (Fig. 1, item 12) square to the poppet, then carefully place the check cap (Fig. 1, item 11) over the poppet and spring. Turn by hand, engage several threads. Tighten to a final torque of 75 ft. lbs (104 lbm).

Step 5 - Relief Valves

Return all relief valves to their proper positions and torque to 75 ft. lbs.

Install new section seals. Place section seals (Fig. 1, items 1 & 2, or items 1 & 3) in the proper grooves. Make certain seals stay in their grooves during assembly.

Step 6 - Install Tie Bolts

Slide the tie bolts through the inlet casting. If cap screws are used, place a washer on the cap screw prior to installation. Place the valve sections on the tie bolts in their proper sequence (see Step 1, page 4). Turn by hand, engage several threads in the nut, if it is a VG series assembly, assemble nut and washer to either end of the stud and follow above instructions. Torque the tie bolts in a cross-corner pattern.

<table>
<thead>
<tr>
<th>Tie Bolt Torque Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA20 - 29 ft. lbs. (348 in. lbs.)</td>
</tr>
<tr>
<td>VG20 - 42 ft. lbs. (504 in. lbs.)</td>
</tr>
<tr>
<td>VA35 - 34 ft. lbs. (408 in. lbs.)</td>
</tr>
<tr>
<td>VG35 - 75 ft. lbs. (900 in. lbs.)</td>
</tr>
<tr>
<td>VG80 - 150 ft. lbs. (1800 in. lbs.)</td>
</tr>
<tr>
<td>TROUBLE</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Oil leaks between sections</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Oil leaks at either end of spool</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Spring-centered spools do not return to neutral</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Load will not hold</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Load drops when spool moved from neutral</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No motion, slow, or erratic system operation</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Pilot-to-open check valve with standard pilot

Functional Group:
Products : Cartridges : Pilot-to-Open Check Valve : 3-Port, Non-Vented : Standard Pilot, Steel Seat

Product Description
This valve is a pilot to open check valve. It has a non-sealed pilot, a steel seat, and is non-vented. It allows free flow from the valve (port 2) to the load (port 1) and blocks flow in the opposite direction. Pressure at the pilot (port 3) will open the valve from port 1 to port 2. Pilot pressure needed at port 3 to open the valve is directly proportional to the load pressure at port 1. Pressure at port 2 directly opposes pilot pressure.

Technical Features
- Provides hose break protection, prevents loads from drifting and positively locks pressurized loads.
- Extremely low leakage. The seat and poppet are heat treated for long life. If the load drifts due to the valve, the seat has probably been damaged by contamination and the valve should be replaced.
- Pilot-to-open check cartridges are locking valves, not motion control valves. For motion control applications,
- Standard unsealed pilot allows air trapped in the pilot line to be purged from the circuit.
- Optional external porting out of the hex end of the cartridge is available for external piloting. In this configuration, port 3 is blocked. See Control options E, and P.
- This 3 port pilot-to-open check valve and 3 port counterbalance valves are physically interchangeable (i.e. same
use counterbalance valves.

- Stainless steel cartridge options P or W are intended for use within corrosive environments with all external components manufactured in stainless steel or titanium. Internal working components remain the same as the standard valves.
- Incorporates the Sun floating style construction to eliminate the effects of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

Technical Data

<table>
<thead>
<tr>
<th></th>
<th>U.S. Units</th>
<th>Metric Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>T-2A</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>30 gpm</td>
<td>120 L/min.</td>
</tr>
<tr>
<td>Pilot Ratio</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Maximum Operating Pressure</td>
<td>5000 psi</td>
<td>350 bar</td>
</tr>
<tr>
<td>Maximum Valve Leakage at 110 SUS (24 cSt)</td>
<td>1 drops/min.</td>
<td>0,07 cc/min.</td>
</tr>
<tr>
<td>Series (from Cavity)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Valve Hex Size</td>
<td>1 1/8 in.</td>
<td>28,6 mm</td>
</tr>
<tr>
<td>Valve Installation Torque</td>
<td>45 - 50 lbf ft</td>
<td>60 - 70 Nm</td>
</tr>
<tr>
<td>Model Weight</td>
<td>.50 lb</td>
<td>0.25 kg</td>
</tr>
<tr>
<td>Seal Kits</td>
<td>Buna: 990-202-007</td>
<td></td>
</tr>
<tr>
<td>Seal Kits</td>
<td>Viton: 990-202-006</td>
<td></td>
</tr>
</tbody>
</table>

Option Selection

CKEB-X C N

Preferred Options

- **Control**
 - X Standard Pilot
 - L Manual Load Release

- **Cracking Pressure**
 - C 30 psi (2 bar)
 - A 4 psi (0,3 bar)
 - B 15 psi (1 bar)
 - D 50 psi (3,5 bar)
 - E 75 psi (5 bar)
 - F 100 psi (7 bar)

- **External Material/Seal Material**
 - N Buna-N
 - P Stainless/Buna-N
 - V Viton
 - W Stainless/Viton

Customer specified setting stamped on hex +$1.10

Related Information:

- Explanation of Sun cartridge control options - US units.
- Explanation of Sun cartridge control options - metric units.
Pilot-to-open, spring biased closed, unbalanced poppet logic element

Functional Group:

Product Description
These unbalanced poppet, logic valves are 2-way switching elements that are spring-biased closed. Pressure at either work port 1 or 2 will further bias the valve to the closed position while pressure at port 3 will tend to open it. The force generated at port 3 must be greater than the sum of the forces acting at port 1 and port 2 plus the spring force for the valve to open. NOTE: The pilot area (port 3) is 1.8 times the area at port 1 and 2.25 times the area at port 2.

Technical Features
- Because these valves are unbalanced, operation is pressure dependent. Opening and closing of the poppet are functions of the force balances on three areas: 1) Port 1 = 100%, Port 2 = 80%, and Port 3 = 180%.
- These valves are pressure responsive at all three ports, therefore it is essential to consider all aspects of system operation through a complete cycle. Pressure changes at any one port may cause a valve to switch from a closed to an open position, or vice versa. All possible pressure changes in the complete circuit must be considered to assure a safe, functional system design.
- These valves have positive seals between port 3 and port 2.

- Stainless steel cartridge options P or W are intended for use within corrosive environments with all external components manufactured in stainless steel or titanium. Internal working components remain the same as the standard valves.

- Incorporates the Sun floating style construction to eliminate the effects of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

Technical Data

<table>
<thead>
<tr>
<th></th>
<th>U.S. Units</th>
<th>Metric Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity Capacity</td>
<td>60</td>
<td>240 L/min.</td>
</tr>
<tr>
<td>Area Ratio, A3 to A1</td>
<td>1.8:1</td>
<td></td>
</tr>
<tr>
<td>Area Ratio, A3 to A2</td>
<td>2.25:1</td>
<td></td>
</tr>
<tr>
<td>Maximum Operating Pressure</td>
<td>5000</td>
<td>350 bar</td>
</tr>
<tr>
<td>Maximum Valve Leakage at 110 SUS (24 cSt)</td>
<td>10</td>
<td>10 drops/min.@70 bar</td>
</tr>
<tr>
<td>Pilot Volume Displacement</td>
<td>.15</td>
<td>2.5 cc</td>
</tr>
<tr>
<td>Series (from Cavity)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. Patent #</td>
<td>4,795,129</td>
<td></td>
</tr>
<tr>
<td>Valve Hex Size</td>
<td>1 1/4</td>
<td>31.8 mm</td>
</tr>
<tr>
<td>Valve Installation Torque</td>
<td>150 - 160</td>
<td>200 - 215 Nm</td>
</tr>
<tr>
<td>Seal Kits</td>
<td>Buna: 990-017-007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viton: 990-017-006</td>
<td></td>
</tr>
</tbody>
</table>

Option Selection

- **LKHC-X**

- **D**

- **N**

Preferred Options

- **Control**
- **Cracking Pressure**
- **External Material/Seal Material**

Standard Options

- X Not Adjustable
- N Buna-N
- V Viton
Pilot operated, balanced piston relief valve

Product Description
Pilot-operated, balanced-piston relief cartridges are normally closed pressure regulating valves. When the pressure at the inlet (port 1) reaches the valve setting, the valve starts to open to tank (port 2), throttling flow to regulate the pressure. These valves are accurate, have low pressure rise vs. flow, they are smooth and quiet, and are moderately fast.

Technical Features
- Will accept maximum pressure at port 2; suitable for use in cross port relief circuits. If used in cross port relief circuits, consider spool leakage.
- Minimum setting is 75 psi (5 bar) for all spring ranges.
- Not suitable for use in load holding applications due to spool leakage.
- Back pressure on the tank port (port 2) is directly additive to the valve setting at a 1:1 ratio.
- The main stage orifice is protected against contamination.
- All 2-port relief cartridges (except pilot reliefs) are physically and functionally interchangeable (same flow path, same cavity for a given frame size).
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

Technical Data

<table>
<thead>
<tr>
<th></th>
<th>U.S. Units</th>
<th>Metric Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>T-162A</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>12 gpm</td>
<td>45 L/min.</td>
</tr>
<tr>
<td>Adjustment - Number of Clockwise Turns to Increase Setting</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Factory Pressure Settings Established at</td>
<td>4 gpm</td>
<td>15 L/min.</td>
</tr>
<tr>
<td>Maximum Operating Pressure</td>
<td>5000 psi</td>
<td>350 bar</td>
</tr>
<tr>
<td>Maximum Valve Leakage at 110 SUS (24 cSt)</td>
<td>2 in³/min.@1000 psi</td>
<td>30 cc/min.@70 bar</td>
</tr>
<tr>
<td>Response Time - Typical</td>
<td>10 ms</td>
<td></td>
</tr>
<tr>
<td>Series (from Cavity)</td>
<td>Series 0</td>
<td></td>
</tr>
<tr>
<td>Valve Hex Size</td>
<td>3/4 in.</td>
<td>19.1 mm</td>
</tr>
<tr>
<td>Valve Installation Torque</td>
<td>25 - 30 lbf ft</td>
<td>35 - 40 Nm</td>
</tr>
<tr>
<td>Adjustment Screw Internal Hex Size</td>
<td>5/32 in.</td>
<td>4 mm</td>
</tr>
<tr>
<td>Adjustment Nut Hex Size</td>
<td>9/16 in.</td>
<td>15 mm</td>
</tr>
<tr>
<td>Adjustment Nut Torque</td>
<td>108 lbf in.</td>
<td>12 Nm</td>
</tr>
<tr>
<td>Model Weight</td>
<td>0.30 lb.</td>
<td>0.14 kg.</td>
</tr>
<tr>
<td>Seal Kits - Cartridge</td>
<td>Buna: 990-162-007</td>
<td></td>
</tr>
<tr>
<td>Seal Kits - Cartridge</td>
<td>Viton: 990-162-006</td>
<td></td>
</tr>
</tbody>
</table>
RPCC-KAN

<table>
<thead>
<tr>
<th>Control</th>
<th>Adjustment Range</th>
<th>External Material/Seal Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>K Handknob</td>
<td>75 - 3000 psi (5 - 210 bar), 1000 psi (70 bar) +0.00 N Buna-N +0.00</td>
<td></td>
</tr>
</tbody>
</table>

Response Time - Typical 10 ms

- **Maximum Valve Leakage at 110 SUS (24 cSt)**: 2 in³/min. @1000 psi, 30 cc/min. @70 bar
- **Series (from Cavity)**: Series 0
- **Valve Hex Size**: 3/4 in. 19.1 mm
- **Valve Installation Torque**: 25 - 30 lbf ft, 35 - 40 Nm
- **Adjustment Screw Internal Hex Size**: 5/32 in., 4 mm
- **Adjustment Nut Hex Size**: 9/16 in., 15 mm
- **Adjustment Nut Torque**: 108 lbf in., 12 Nm
- **Model Weight**: 0.30 lb., 0.14 kg.

Seal Kits - Cartridge Buna: 990-162-007
- Cartridge Viton: 990-162-006

Control Adjustment Range

- **External Material/Seal**
 - K Handknob: 75 - 3000 psi (5 - 210 bar), 1000 psi (70 bar) +0.00 N Buna-N +0.00

Typical Pressure Rise

<table>
<thead>
<tr>
<th>Flow = GPM</th>
<th>Typical Pressure Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000 psi</td>
</tr>
<tr>
<td>5</td>
<td>2000 psi</td>
</tr>
<tr>
<td>10</td>
<td>3000 psi</td>
</tr>
<tr>
<td>15</td>
<td>4000 psi</td>
</tr>
<tr>
<td>20</td>
<td>5000 psi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow = GPM</th>
<th>Typical Pressure Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50 bar</td>
</tr>
<tr>
<td>25</td>
<td>100 bar</td>
</tr>
<tr>
<td>50</td>
<td>200 bar</td>
</tr>
<tr>
<td>75</td>
<td>300 bar</td>
</tr>
<tr>
<td>100</td>
<td>350 bar</td>
</tr>
</tbody>
</table>